
Genuine, Full-power, Hygienic
Macro System for

 a Language with Syntax

David A. Moon
International Lisp Conference

March 23, 2009

Presented at the International Lisp Conference 2009
© Association of Lisp Users

David A. Moon International Lisp Conference, March 23, 2009 1

Outline:
Introduction

Programming language
Goal of this talk

Objects
Syntax
Macros

Genuine, Full-Power, Hygienic, Easy to Use
Examples

Code Walking
David A. Moon International Lisp Conference, March 23, 2009 2

Programming Language for Old Timers

A hobby, not a serious implementation
Trying to do things “right”

You know it is right when both simplicity
and power are maximized, while at the
same time confusion and kludges are
minimized. This is hard!

Cleanliness, Flexibility, Orthogonality, Extensibility
A dialect of Lisp, even if it doesn’t look like it

David A. Moon International Lisp Conference, March 23, 2009 3

Goal of this talk

Show it is possible to have good macros in a
language with syntax. “Good” means:

Genuine = structural, not string substitution

Full-power = macros can compute, can
accept any syntax, can do anything
that the built-in syntax can do

Hygienic = no unintentional name clashes
David A. Moon International Lisp Conference, March 23, 2009 4

PLOT Objects
Data defined by classes

Slots, inheritance, constructor
No magic “primitive types,” only class instances
Multi-valued slots instead of magic array objects

Behavior defined by function methods
Call a function with arguments
Dispatches to most specific applicable method

Classification of data defined by types
A type is a dichotomy over all objects
Type = class, integer range, union, protocol

David A. Moon International Lisp Conference, March 23, 2009 5

PLOT Syntax
Infix syntax for operators and function calls
Uniform syntax

Unify expressions, statements, and declarations
Operator is a definition, not an inherent property

Minimize punctuation
BCPL: Omit semicolon at end of line. If line
 ends with operator it continues on the next
Python: Indentation, not brackets, for nesting

Operator macros
(is a macro with function on lhs, args on rhs

David A. Moon International Lisp Conference, March 23, 2009 6

PLOT Syntax Examples
if x < 3 foo(x) else bar(x, y)

while f1(x, precise: true) < 3
 f2(x)
 f3(x)

for i from 0 below b.length, j downfrom k
 a[j] := b[i]

block exit: return
 traverse([x, y => if x > y return(x, y)], tree)
David A. Moon International Lisp Conference, March 23, 2009 7

PLOT Syntax Examples (continued)
def pi = 3.14159

def fib(x) fib(x - 1) + fib(x - 2)
def fib(x is integer(infinity, 1)) 1

defclass point
 x is number
 y is number

defmacro print ?expr => `write(stdout, ?expr)`

David A. Moon International Lisp Conference, March 23, 2009 8

Genuine, Full-Power, Hygienic, Easy to Use Macros

Structural like Lisp
works on Abstract Syntax Trees
not string substitution like C

This means that everything nests properly.

You can write macro-defining macros.

You can do code walking.
David A. Moon International Lisp Conference, March 23, 2009 9

Genuine, Full-Power, Hygienic, Easy to Use Macros

PLOT achieves genuineness by
implementing macros as functions that
execute inside the compiler (or IDE).

A macro parses from a stream that yields
tokens and/or Abstract Syntax Trees.

A macro produces an Abstract Syntax Tree
object or a token list to be re-parsed.
David A. Moon International Lisp Conference, March 23, 2009 10

Genuine, Full-Power, Hygienic, Easy to Use Macros

Abstract Syntax Tree = object-oriented S-
expr

Types:
literal conditional
quotation definition
name block-expression
invocation assignment etc.

David A. Moon International Lisp Conference, March 23, 2009 11

Genuine, Full-Power, Hygienic, Easy to Use Macros

1. Arbitrary computations can be executed
during macro expansion.

Macros can:
communicate with each other
operate on already-parsed code
be aware of scopes and definitions
do file I/O

David A. Moon International Lisp Conference, March 23, 2009 12

Genuine, Full-Power, Hygienic, Easy to Use Macros

2. Macros can accept any syntax that is
possible to parse.

Not limited to a fixed set of predefined forms
e.g. foo and foo(arg, arg, ...) in C
e.g. (foo ...) in Lisp and Scheme

Users are free to use whatever is most
expressive for their purposes.
David A. Moon International Lisp Conference, March 23, 2009 13

Genuine, Full-Power, Hygienic, Easy to Use Macros

3. Macros can do anything the language’s
built-in syntax can do (there is no magic).

Thus user-defined domain-specific languages
can be syntactically compatible with the base
language.

Macros can call the same syntactic type
parsers that the built-in syntax calls.
David A. Moon International Lisp Conference, March 23, 2009 14

Genuine, Full-Power, Hygienic, Easy to Use Macros

PLOT achieves full power by implementing
macros as functions that execute inside the
compiler (or IDE). Thus macros can do
anything that any function can do.

A macro entirely controls its parsing.

PLOT has no built-in syntax! Everything is a
macro, exported by a predefined module.
David A. Moon International Lisp Conference, March 23, 2009 15

Genuine, Full-Power, Hygienic, Easy to Use Macros

No unintentional name clashes:
• a name introduced by a macro call means what
 it means at the call site.
• a name introduced by a macro definition means
 what it means at the definition site.
• a macro can expand into local definitions,
 invisible to caller.
• deliberately visible local definitions allowed,
 caller can supply name or can be anaphoric.
David A. Moon International Lisp Conference, March 23, 2009 16

Genuine, Full-Power, Hygienic, Easy to Use Macros
Macro Call Macro Definition
def a ...

mac a g

def a

defmacro mac ?x ?f =>
 `block
 def a = ?x + a
 def ?x = f(a)
 ?f(?x, a)`block

 def a = a + a
 def a = f(a)
 g(a, a)

expansion

source
definition

David A. Moon International Lisp Conference, March 23, 2009 17

Genuine, Full-Power, Hygienic, Easy to Use Macros

PLOT achieves hygiene by storing a
“context” in a slot of each name object in an
Abstract Syntax Tree.

A name introduced by a macro definition has
a context that allows it to see only definitions
introduced by the same macro expansion,
plus definitions in scope at the macro
definition.
David A. Moon International Lisp Conference, March 23, 2009 18

Genuine, Full-Power, Hygienic, Easy to Use Macros

A name introduced by a macro call does not
have the same context as one introduced by
a macro definition, so it cannot see invisible
local definitions in the macro expansion.

This works for macro-defining macros too.
There are three relevant contexts for names:
end-user call, defining-macro call, defining-
macro definition.
David A. Moon International Lisp Conference, March 23, 2009 19

 Genuine, Full-Power, Hygienic, Easy to Use Macros

Writing parsing code can be very tedious and
also error-prone.

Constructing an Abstract Syntax Tree one
node at a time can be tedious.

Keeping track of the contexts for hygiene is
a burden on macro writers.
David A. Moon International Lisp Conference, March 23, 2009 20

 Genuine, Full-Power, Hygienic, Easy to Use Macros

Solution: Domain-specific languages for macros
Patterns for parsing
Templates for constructing expansion
Macros are not required to use these

Declarative is easier than imperative.
Parsing can call library syntactic type parsers.
No extra work to be hygienic.
No extra work for visible local definitions with
caller-supplied name.
David A. Moon International Lisp Conference, March 23, 2009 21

Patterns

defmacro if
 { ?test [then] ?then is block & elseif }+
 [else ?else is block] => ...

? introduces a pattern variable
? name is syntactic type (default = expression)
{ ... }+ means repeat one or more times
& introduces separator between repeats
[...] means optional
David A. Moon International Lisp Conference, March 23, 2009 22

Templates

`def loop({ ?vars is ?types &, }*)
 if { ?tests & and }+
 ?body
 loop({ ?steps &, }*)`

` is the template macro
? introduces a substitution variable
{ ... }* means repeat zero or more times
& introduces separator between repeats
David A. Moon International Lisp Conference, March 23, 2009 23

Macros’ place in the compiler

Extension of parse phase (NOT transform phase!).
Compiler calls parse-expression.
When parse-expression sees a name defined as a
macro, it calls the macro’s parse function.
Extensible syntax requires LL(1) recursive
descent parsing rather than grammar compiler.
Macro returns AST or token list.
Macro expanding into a macro call means next
macro could see AST as a token.
David A. Moon International Lisp Conference, March 23, 2009 24

Example Macro: print

def print = macro(
 [tokens is token-stream, previous-context =>
 invocation(#write,
 #stdout,
 parse-expression(tokens,
 previous-context, true))])

print x + y * z
 =>

write(stdout, x + y * z)
David A. Moon International Lisp Conference, March 23, 2009 25

Example Macro: if

;; A simplified version of if
defmacro if ?test ?then [else ?else] =>
 conditional(test, then, else or quotation(false))

David A. Moon International Lisp Conference, March 23, 2009 26

Example Macros: if

;; This is the real definition of if
defmacro-block if
 { ?test [then] ?then is block & elseif }+
 [else ?else is block] =>
 reduce-right(conditional,
 else or quotation(false),
 test,
 then)

David A. Moon International Lisp Conference, March 23, 2009 27

Example Macro: for
defmacro for ?var is name from ?from to ?to
 ?:body =>
 `block
 def start = ?from
 def limit = ?to
 def loop(?var)
 if ?var <= limit
 ?body
 loop(?var + 1)
 loop(start)`
David A. Moon International Lisp Conference, March 23, 2009 28

Example Macro: defmacro

defmacro defmacro
 ?:name { ^ ?:pattern \=> ?:block }+ =>
 def msg = sequence-to-string(
 collect-pattern-starts(pattern), ", ", " or ")
 def err = `wrong-token-error(?=tokens, ?msg)`
 def expander = reduce-right(
 translate-pattern(`?=tokens`, _, _, _),
 err, pattern, block)
 continued on next slide
David A. Moon International Lisp Conference, March 23, 2009 29

Example Macro: defmacro (pg 2)

 `def ?name = macro([name: ?name,
 ?=tokens is token-stream,
 ?=previous-context =>
 def ?=macro-context = unique-macro-context()
 def ?=source-file, ?=source-line =

 source-location(?=tokens)
 ?expander])`

David A. Moon International Lisp Conference, March 23, 2009 30

Example Macro: App-specific
defmacro def-character-class
 ?:name = { ?expr }+ [size: ?size] =>
 ;; Functions to convert input to character code ranges
 def range(x is invocation) code(x.args[0]) : code(x.args[1])
 def range(x is anything) code(x) : code(x)
 def code(x is integer) x
 def code(x is character) char-code(x)
 ;; Build the bit vector at compile time
 def bits = bit-vector#(size or 256)
 for x in expr
 for code in range(x)
 bits[code] := 1 continued on next slide
David A. Moon International Lisp Conference, March 23, 2009 31

Example Macro: App-specific (pg 2)

 ;; Define name to be that constant bit vector
 def constant = quotation(bits)
 `def ?name = ?constant`

;; Example uses of the macro

def-character-class whitespace = ' ' '\t' 10 13

def-character-class letters = ‘A’ : ‘Z’ ; Majuscules
 ‘a’ : ‘z’ ;miniscules

David A. Moon International Lisp Conference, March 23, 2009 32

Code Walking

Traditionally, code walking has required ad
hoc code to understand every “special form.”

It is better to have a well-defined, object-
oriented interface to the Abstract Syntax
Tree, scopes, and definitions. This is why
objects are better than S-expressions as a
representation for program source code.
David A. Moon International Lisp Conference, March 23, 2009 33

Code Walking Protocol

Collecting code walk
;; reduce(function, initial-value, subexpressions(e))
require walk(f is function, e is expression, s is scope,
 initial-value is anything,
 result: new-value)

Replacing code walk
;; Replace each subexpression of e with f(sub,scope)
require walk(f is function, e is expression, s is scope,
 result: new-expression is expression)
David A. Moon International Lisp Conference, March 23, 2009 34

Code Walking Example

def free-variables(e is expression,
optional: s is scope = local-scope(),

 vars is collection = stack())
 walk(free-variables, e, s, vars)

def free-variables(n is name,
optional: s is scope = local-scope(),

 vars is collection = stack())
 if lookup(s, n) or member?(n, vars) then vars
 else add(n, vars)
David A. Moon International Lisp Conference, March 23, 2009 35

Another Code Walking Example

Stick trace in front of an expression to trace
all function calls inside it.

defmacro trace ?expr =>
 add-tracing(expr, get-local-compiler-scope())

;; Default method just walks over subexpressions
def add-tracing(e is expression, s is scope)
 walk(add-tracing, e, s)
David A. Moon International Lisp Conference, March 23, 2009 36

Another Code Walking Example (pg 2)

;; This method adds tracing to a function call
def add-tracing(e is invocation, s is scope)
 def fcn = add-tracing(e.function, s)
 def args = map(walk(add-tracing, _, s),
 e.arguments)
 def macro-context = unique-macro-context()
 def temps =
 for n from 1 to args.length
 collect name(“temp-?n”, macro-context)
 continued on next slide
David A. Moon International Lisp Conference, March 23, 2009 37

Code Walking Example (pg 3)

 parse-expression(token-sequence-stream(
 `do
 def fcn = ?fcn
 { def ?temps = ?args & ^ }*
 def results = values-list(fcn({ ?temps &, }*))
 write(*trace-output*,
 “ “ + fcn + “(“ { + ?temps }* +
 “) = “ + results + “\n”)
 values(results...)`),
 false, true)
David A. Moon International Lisp Conference, March 23, 2009 38

For More Information

For lots of expository text and larger
examples, see

http://users.rcn.com/david-moon/PLOT/index.html

David A. Moon International Lisp Conference, March 23, 2009 39

Questions?

Maybe some answers.

David A. Moon International Lisp Conference, March 23, 2009 40

