
LABORATORY MEASUREMENTS

The majority of the studies performed in the
clinical laboratory consist of measurements of the
concentrations of blood cells and of chemical
substances in body fluids (Table 2.1).  The chemical
substances that are studied include gases,
electrolytes, metabolic intermediates, waste
products, tissue proteins, plasma proteins,
hormones, micronutrients, drugs, and toxins.  Most
of what is discussed in this chapter applies most
directly to such concentration measurements.
However, with some modifications, the concepts can
also be applied other kinds of laboratory
measurements.

THE PROCESS OF MEASUREMENT

The process of laboratory measurement proceeds
in four steps: sample preparation, analyte separation,
analytical signal production and detection, and calcu-
lation of results.  Sample preparation consists of the
operations that must be performed on a specimen to
yield the test material that constitutes the sample.  It
is the sample, or a portion of the sample, that is
introduced into the measurement system and on
which the measurement is carried out.   In the deter-
mination of the plasma concentration of a chemical
substance such as creatinine, sample preparation
consists of the separation of the plasma (or serum if
the specimen is clotted blood) from the blood cells
by centrifugation of the specimen.

There may be an analyte separation step that
represents a more-or-less specific isolation of the
analyte of interest from the other chemical
substances in the sample.  For instance, if creatinine
is to be measured using the Jaffé reaction, it can be
absorbed to porous aluminum silicate clay or a
cation exchange resin to separate it from other
plasma substances that react with the signal generat-
ing reagent.

Analytical signals are generated and detected in
a wide variety of ways.  In automated blood cell
counting, for instance, the signal consists of a
voltage pulse arising from a change in electrical

impedance across an aperture as a cell passes
through the aperture.  The signal is detected by a
voltmeter.  One way to produce an analytical signal
for the measurement of chemical substances is by the
formation of a chemical species that absorbs light.
In the Jaffé reaction for creatinine, picrate reacts
with creatinine under alkaline conditions to form a
strongly light-absorbing red-orange compound, the

Laboratory Methods  2-1

Table 2.1
Concentrations of selected blood analytes

Blood cells

cells/L 1013

red cells
1012

1011 platelets
reticulocytes

1010

neutrophils
109 lymphocytes

108 eosinophils

Chemical substances

mol/L 100 

10-1 sodium, chloride

10-2 
potassium, glucose, urea

10-3  calcium, carbon dioxide
albumin

10-4 uric acid

10-5 bilirubin, iron, haptoglobin
fibrinogen

10-6 
cortisol

10-7 thyroxine
hydrogen ion

10-8 

10-9 testosterone, factor VIII
cobalamin

10-10 ferritin

10-11 
parathyroid hormone

10-12
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Janovski complex.  The signal consists of the reduc-
tion in the amount of light passing through the
reaction solution.  The signal is detected by a
spectrophotometer.

Calculation of results
In order to arrive at a study result, the magni-

tude of the signal generated by a sample must be
converted to a concentration value.  This can be
done in either of two ways.  If the measurement
system has been shown to have signal generating
properties that closely match the theoretical ideal,
the theoretical relationship between analyte concen-
tration and signal magnitude can be used to calculate
the result.  For example, the theoretical relationship
between analyte concentration and light absorbance
is embodied in the Beer-Lambert law,

   analyte concentration =

 absorbance
analyte absorptivity $ light path

For an ideal system, dividing the observed absor-
bance value by the known values for the absorptivity
of the analyte and the length of the light path in the
detector yields the analyte concentration.

In practice, the behavior of measurement
systems is rarely ideal, so the use of theoretical
relationships is not a satisfactory way to calculate
results.  Instead, results are calculated using the
empirical relationship between analyte concentration
and signal magnitude as established by the measure-
ment of signals produced by a set of test materials
with known analyte concentrations.  These test
materials are called calibrators (formerly, standards)
and the relationship between analyte concentration
and signal magnitude is called a calibration curve.
A hypothetical linear calibration curve is shown in
the upper graph of Figure 2.1

To convert the signal generated by a test sample
to a concentration value, the calibration curve is
used in reverse.  That is, rather than finding the y
(signal) value on the curve for a known x (concen-
tration) value, an x value on the curve is found that
corresponds to the known y value.  For a signal of
100 units, for instance, the corresponding point on
the calibration curve has a concentration of 10 units.
The measurement result is therefore, 10 concentra-
tion units.  Because it is unconventional to reverse
the roles of the x- and y-axes, results are calculated
using what is called a measurement curve which is
identical to the calibration curve except that the x-

and y-axes are switched (the lower graph in Figure
2.1).  Note that inversion of the equation describing
the calibration curve yields the equation that defines
the  measurement curve.

Calibration and measurement curves are usually
constructed each time that a batch of measurements
is made.  Calibrators are run along with the test
samples and the parameters of the equations defining
the curves are estimated from the observed calibrator
and signal magnitude pairs.  The number and
spacing of the calibrators should be chosen with the
intent of providing for highly reliable estimation of
the equation parameters.  According to the statistical
theory of optimal design, there exists a unique set of
calibrator concentrations that yields the most precise
estimates of the equation parameters (Fedorov 1972,
Steinberg and Hunter 1984).  In general, the number
of separate concentrations that should be evaluated
equals the number of parameters in the equation.  In
the case of a linear calibration curve there are two
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Figure 2.1  Hypothetical calibration and measurement
curves (solid lines).  The graphical technique for the calcula-
tion of the result given a signal of 100 units is depicted.



parameters, the slope and the intercept, so two
concentrations should be evaluated.  The optimal
concentrations are the concentrations at each end of
the range of measurement.  Figure 2.2 illustrates a
simulated application of this optimal design. The
hypothetical linear calibration relationship has an
intercept of zero and a slope of two and proportional
measurement variability.  Using a scheme in which
the calibrators are evenly spaced over the clinical
range results in the parameter estimates shown in the
upper graph.  Using the optimal scheme (lower
graph) with the same number of calibrators gives
parameter estimates that are closer to the true
(simulation) values.  An added benefit of the end-of-
range calibrator spacing scheme is that the incon-
stancy of the measurement variability is much more
clearly demonstrated than with the even spacing
scheme.  Optimal spacing schemes can also be
devised for more complex equations such as those
for immunoassays (Bezeau and Endrenyi 1986).

Ordinary linear regression is the technique most
frequently used for the estimation of the parameter
values of linear calibration curves.  This technique
has an underlying assumption: the variability in the
measurement of the dependent variable has a
constant variance (Berry 1993).  If the variability in
the measurement of the analytical signal is not
constant over the range of calibrator concentrations
employed, weighted linear regression analysis,
which adjusts for the inconstancy in the variability of
measurement, should be used instead.

Nonlinear regression analysis is the most
accurate and precise technique of parameter estima-
tion for nonlinear curves (Motulsky and Ransnas
1987).  It is the technique that is used to estimate the
parameters of the sigmoidal calibration curves found
in immunoassay systems 

THE METHOD OF MEASUREMENT

Most measurements can be performed in a
number of ways that vary in the nature of the
sample, the technique of analyte separation, the
means of producing and detecting the analytical
signal, and the technique for calculating results.  A
specific way of performing a measurement is
referred to as a method of measurement or, infor-
mally, as a laboratory method or, more simply still,
as a method.  Laboratory methods are the basic units
of laboratory practice. 

METHOD QUALITY

The quality of a laboratory method can be
defined as the ability of the method to satisfy the
clinical needs served by measurements made with
the method.  There is always a need for trueness and
precision.

Trueness of measurement
Trueness is defined as the closeness of agree-

ment between the true value of an analyte and the
average result value obtained from a large number of
replicate measurements (Stöckl 1996, Dybkaer
1995).  It is the term that is currently applied to the
concept that used to be called accuracy.  Accuracy is
now used to denote the broader concept of closeness
of agreement between the true value of an analyte
and a single measurement result.  As such, accuracy
reflects both trueness and precision of measurement.
Trueness is measured on a ordinal scale of the sort:
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Figure 2.2  Calibration curves as obtained by two different
calibrator spacing schemes.  The even spacing scheme is
shown in the top graph and the end-of-range spacing
scheme is shown in the bottom graph.
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poor/average/excellent.  The inverse of trueness,
which is called bias (or systemic error of measure-
ment), is a quantitative measure.  It is the difference
between the true value of an analyte and the average
result value.  Because it is useful to have a quantita-
tive measure of quality, bias is the measure that is
applied when appraising the trueness of a measure-
ment method.

Bias arises when the calibration process does not
reflect the test measurement process perfectly.
Causes of bias include matrix effects, calibrator
effects, and treatment effects (Strike 1996).

Matrix effects arise from the differences that
exist between the complex biological matrix found in
test samples and the artificial matrix of the calibra-
tors.  Physical matrix effects are caused by physical
properties, such as sample viscosity, that result in
test samples being processed differently than calibra-
tors by the measurement instrument.  Nonspecific
chemical matrix effects, called interference effects,
are caused by substances in the test sample that,
while not generating a signal themselves, affect the
magnitude of the signal generated by the analyte
being measured (Kroll and Elin 1994).  Specific
chemical matrix effects are referred to as cross-
reaction effects.  They are caused by substances in
the test sample that generate a signal identical to that
of the analyte of interest.  Considerable effort is
devoted to the evaluation of cross-reactions during
the development of laboratory methods and various
techniques may be employed to improve the specific-
ity of the method by reducing or eliminating the
cross reacting substances.  Separation of the analyte
from cross-reacting substances, discussed earlier as a
frequent step in the measurement process, is one
means of increasing method specificity.  The selec-
tive adsorption of creatinine to fuller’s earth was
mentioned as an example.  Some other separation
techniques are listed in Table 2.2.  One of these
techniques, liquid chromatography, is even more
successful than fuller’s earth in specifically isolating
creatinine from substances that cross-react in the
Jaffé reaction.  Method specificity can also be
improved in the analytical signal generation and
detection step of analyte measurement.   One
approach taken at this step is to increase the selectiv-
ity of the signal generating reaction so that only the
specific analyte participates in the reaction.  One
way to do this is to use analyte-specific enzymes to
catalyze a reaction that leads to the production of the
signal.  A number of enzymatic methods are

available for the measurement of creatinine.  In the
most popular method, creatinine is hydrolyzed to
creatine by the highly specific enzyme, creatinine
amidohydrolase.  Creatine formation is coupled,
through a series of specific enzymatic reactions, to
the production of a light-absorbing species that
provides the analytical signal.  The specificity inher-
ent in enzyme reactions can also be taken advantage
of when an enzyme is itself the analyte of interest.
In that case, a reagent that is a substrate of the
enzyme undergoes a catalytic conversion to a
product that is coupled to the production of the
analytical signal.  For example, creatine kinase
concentrations are determined by measuring the rate
of formation of ATP and creatine from the substrates
ADP and creatine phosphate.  Note that, in methods
of this sort, enzyme concentrations are measured and
reported in terms of enzymatic activity rather than
substance concentration.  Another approach for
improving method specificity in the analytical signal
generation and detection step is to increase the selec-
tivity of signal detection so that the only the signal
generated by the analyte is detected.  One way this is
done is by the so-called kinetic technique which
depends upon a differential rate of signal production
for the analyte and cross-reacting substances.  In the
Jaffé reaction, the cross-reacting substances tend to
react with picrate slowly compared to creatinine so
the initial rate of Janovski complex formation is due
largely to creatinine.  By measuring the initial rate,
the signal from creatinine can be segregated from the
signals arising from the cross-reacting substances.

Bias due to calibrator effects arises from differ-
ences between the analyte used in the calibrators and
the analyte as found in patients.  One way this
happens is when a class of chemical species repre-
sents the analyte of interest but the calibration
material is based on a single species within the class.
The measurement of total protein in the urine is a
good example of this situation.  Another cause of
calibration effects is the use of non-human or altered
human analyte in calibrators.  Analytes used in
calibrators must be available in quantity and they
must be stable. It is often simply impossible to
procure from human sources adequate amounts of
trace analytes, such as hormones.  It is similarly
impossible to preserve in unaltered form fragile
analytes such as blood cells.

Bias can also be caused by treatment effects.
These effects arise when test specimens and calibra-
tors are not treated in an identical fashion when
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preparing analytical samples.  For example, prior to
measuring the concentration of some protein-bound
and intracellular analytes, it is necessary to release
the analyte into solution.  To accomplish this, a
release reaction will be performed on the test speci-
mens.  The same reaction may not be performed on
the calibrators because the analyte in calibrators is
already in solution.

Precision of measurement
Precision is defined as the closeness of agree-

ment among the result values obtained from a large
number of replicate measurements (Dybkaer 1995).
Precision is measured on an ordinal scale but its
inverse, imprecision, is a quantitative measure.
Imprecision (or random error of measurement) is the
dispersion of results for a large number of replicate
measurements.  It is usually expressed in terms of
standard deviations.

Imprecision arises from multiple sources which
can be categorized according to the following
scheme (Dybkaer 1995): (1) those that arise during a
single batch of measurements, (2) those that arise

over the course of the performance of multiple
batches of measurement, and (3) those that arise
when several laboratories contribute to the produc-
tion of results.

Imprecision arising during a single batch of
measurements is called within-run, or within-batch
imprecision and is measured in terms of the within-
run standard deviation.   Because it quantifies
method precision in the setting of the minimum
number of sources of measurement variability,
within-run imprecision is the minimum precision
attainable by the method.  The causes of within-run
imprecision include volumetric errors, instrumental
fluctuations, variability in the efficiency of the
separation step, and vagaries in the rate and
completeness of the signal generating step.

Imprecision arising from the performance of
multiple batches of measurement is called between-
run, or between-batch, imprecision and is measured
in terms of the between-run standard deviation.  The
causes of between-run imprecision include recalibra-
tion of the measurement system, different calibrators
and reagents, different operators, and time
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Table 2.2 
Selected Separation Techniques for Improving Method Specificity

Technique Principle and examples

Membrane permeability analyte-permeable membrane separates sample from site of signal generation
only specific analyte passes through membrane

O2 and CO2 electrodes, ion-selective electrodes, ultrafiltration, equilibrium dialysis

Electrophoresis chemicals in buffer migrate through support medium in electric field
chemicals have different migration rates due to different charges and different

degrees of interaction with stationary phase
specific analyte migrates to characteristic location 

cellulose acetate electrophoresis, agarose gel electrophoresis (named for support medium)

Chromatography mobile phase (gas or liquid) passes through a column with a stationary phase bound 
to support medium

chemicals in mobile phase have different degrees of interaction with stationary phase 
which leads to different migration rates through column

specific analyte elutes from column at characteristic retention time

gas chromatography, liquid chromatography (named for mobile phase)

Antibody binding analyte-specific antibodies are bound to support medium
only specific analyte binds to antibodies and is retained on support medium

following wash

heterogeneous radio-, enzyme, and fluorescence immunoassays

 



dependent phenomena such as drift in the perform-
ance characteristics of the measurement instrument. 

Within-laboratory imprecision is the total impre-
cision in the measurement of an analyte in a single
laboratory.  It reflects the variability arising within
and between runs.  The variances of these two
sources add together to give the total variance,

varwithin-laboratory = varwithin−run + varbetween−run

where var is variance. In terms of the usual measure
of imprecision, standard deviations,

SDwithin-laboratory = SDwithin−run
2 +SDbetween−run

2

where SD is standard deviation.
The imprecision that arises when several labora-

tories contribute to the production of results is called
between-laboratory imprecision.   It is caused by
inter-laboratory variation in calibrators, calibration
spacing scheme, choice of calibration function, and
technique for estimation of calibration curve parame-
ters. Other causes include differences in operating
conditions, differences in operator skill, and differ-
ences in the measurement system.

Resolving power.  The precision of a method
determines how good the method is at distinguishing
differences in analyte concentration.  This property,
referred to as the resolving power of a method, is a
useful alternative measure of method precision,
especially when small changes in analyte concentra-
tion must be discerned and when trace concentra-
tions of analyte must be detected (Sadler et al. 1992,
Gautschi et al. 1993).  The resolving power of a
method is what is often referred to as the analytical
sensitivity of the method (Ekins and Edwards 1997).
Resolving power is a less confusing term, however,
because analytic sensitivity is also taken to mean the
slope of the calibration curve (Pardue 1997).

The usual way in which resolving power is
expressed is as the minimum distinguishable differ-
ence in concentration, Dmin.  This parameter can be
defined for within-run differences or for between-
run differences.  For between-run differences
(Sadler et al. 1992),

Dmin = zc SDwithin-laboratory2

where zc is the confidence coefficient as found with
the standard normal distribution; zc equals 1.645 for
a 95% confidence level.  This formula assumes that
method precision is essentially constant over inter-
vals of analyte concentration equal in length to Dmin.
The detection limit of a method, which is the

smallest analyte concentration that can reliably be
distinguished from zero, is a special case of Dmin.

Hierarchy of method quality
The ideal of laboratory practice is to implement

methods of the highest quality.  Unfortunately, of
the methods available for the measurement of a
particular analyte, those of the very highest quality
are always too expensive and too impractical for
most clinical laboratories.  These methods, which
are called definitive methods, are used to validate
the accuracy of the methods at the next level of
quality, called reference methods.  Reference
methods, which have only negligible inaccuracy
compared to definitive methods, are generally less
costly than definitive methods but they are still
impractical for routine use.  They are used to
validate the accuracy of the affordable and practical
methods of lower quality that are actually imple-
mented in the clinical laboratory.  These methods
are called field methods.  This hierarchic chain of
validation of the accuracy of laboratory methods
represents one of the two elements of the system of
accuracy transfer that is used to assure the quality of
field methods.  The other element of the system is a
hierarchy of calibrators.  In this hierarchy, field
methods are calibrated with secondary reference
materials, these being calibrators whose values have
been established using a reference method.  Refer-
ence methods, in turn, are calibrated with primary
reference materials which are calibrators whose
values have been certified by competent authority
through the use of a definitive method.

Analytical quality goals
It is recognized that field methods cannot

provide reference method-level analytical quality
given the constraints of affordability and practicality
within which the methods must operate.  However,
it is necessary that the methods achieve a minimum
level of quality—one that allows them to be of use
clinically.  It is therefore useful to define a desirable
level of quality that can be used by both method
developers and laboratorians as a benchmark for
field method performance.

A number of different approaches can be used to
define desirable analytical quality goals (Stöckl et al.
1995).  These approaches include defining goals in
keeping with the current “state of the art" in high-
quality laboratories, having experts define the goals,
and basing goals on the quality expectations of
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clinicians.  Additionally, quality goals can be
derived from a consideration of the biologic variabil-
ity of the analyte being measured.  For instance, as
discussed in Chapter 1, the extent of the variability
in study results with repeated testing of an individual
is determined by the within-individual biologic
variability of the analyte and the within-laboratory
analytical variability,

  SDwithin-individual = 

SDwithin−individual,biologic
2 +SDwithin−laboratory

2

The fractional increase in the total within-individual
variability attributable to analytic variability is,
therefore,

1 +
SDwithin−laboratory

SDwithin−individual,biologic

2
− 1

To keep the contribution of the analytical component
at a reasonable level, say 10 percent, the ratio of the
within-laboratory variability to the within-individual
biologic variability must be less than 0.459.  Round-
ing up to 0.5 (for which the fractional increase in
within-individual variability is 11.8 percent) yields
the quality goal for repeated testing (Cotlove et al.
1970, Harris 1979, Fraser et al. 1997),

SDwithin-laboratory < 0.5 SDintra-individual,biologic

This rule can also be expressed as

CVwithin-laboratory < 0.5 CVintra-individual,biologic

which is particularly useful if within-individual
biologic variability is proportional to analyte concen-
tration.  Then both coefficients of variation will be
constant.

The reference interval for an analyte depends
upon the median analyte value and the total (intra-
and inter-individual) biologic variability of the
analyte.  In also depends upon the bias in the
measurement of the analyte and the within-
laboratory analytical variability.  When calculated
based on the assumption of a normal frequency
distribution,

  reference interval =

       median value + bias ± 1.96 SDtotal

where

SDtotal = SDbiologic
2 +SDwithin−laboratory

2

The presence of bias results in a displacement of the
measured reference interval from the true reference
interval which is,

median value ± 1.96 SDbiologic

As a result, at one side of the reference interval,
individuals who fall inside the measured reference
interval fall outside of the true reference interval.
At the other side of the reference interval, individu-
als who are outside of the measured reference inter-
val are inside the true reference interval.  The
fraction of the population misclassified in this way
should be kept to an acceptable level.  If a 5 percent
misclassification rate is used as the standard, in the
absence of analytical imprecision, the ratio of the
bias to the total biologic variability should be kept
less than 0.315.  Rounding down to 0.25 (for which
the misclassification rate equals 3.7 percent) yields
the quality goal for reference intervals (Gowans et
al. 1988 and 1989, Fraser et al. 1997),

bias < 0.25 SDbiologic

which can also be expressed as 
relative bias < 0.25 CVbiologic

Analytic imprecision widens the reference interval
and thereby also results in misclassification.  Using
3.7 percent misclassification as the standard, in the
absence of bias, the ratio of the within-laboratory
variability to the total biologic variability should be
kept less than 0.56.  This is another quality goal for
reference intervals (Fraser et al. 1997),

SDwithin-laboratory < 0.56 SDbiologic

which can also be expressed as 
CVwithin-laboratory < 0.56 CVbiologic

Of course, the misclassification rate should also be
within desirable limits when both bias and impreci-
sion are present.  Figure 2.3 shows the paired values
for relative bias and imprecision that satisfy the 3.7
percent misclassification standard.

The application of these quality goals can be
illustrated by using them to define the desirable
analytical quality of a field method for plasma creati-
nine concentration.  At a concentration of 100
µmol/L, the average SDwithin-individual,biologic is 4.3
µmol/L (CVwithin-individual,biologic, 4.3%) and the average
SDbiologic is 11.3 µmol/L (CVbiologic, 11.3%)
(Sebastián-Gámbaro et al. 1997).  The quality goal
for precision based on the rule for repeated testing is
an SDwithin-laboratory of less than 2.15 µmol/L
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(CVwithin-laboratory of less than 2.15%).  At this level of
imprecision, the ratio of SDwithin-laboratory to SDbiologic is
0.19.  So, using Figure 2.3, the quality goal for
trueness based on the rule for reference intervals is a
relative bias of less than 0.215 which corresponds to
an absolute bias of less than 2.43 µmol/L.

MAINTAINING QUALITY

Once a laboratory method has been implemented
in the clinical laboratory, its quality is maintained by
strict adherence to the approved procedure for
performing the method, by the maintenance of high
technical skill among the method operators, by the
regular maintenance of the instruments utilized in the
method, and by a rigorous quality assurance
program.

Written measurement procedure
The laboratory document that contains the

description of the steps in the performance of a
method is called the written measurement procedure
(Dybkaer 1997).  In addition to describing the
method, this document includes introductory
material, a description of the quality assurance
program for the method, and a summary report of
the quality evaluation of the method (Table 2.3).

The introductory material identifies the method,
summarizes the clinical rationale for the measure-
ment of the analyte and the laboratory rationale for
the choice of method, specifies the type of specimen,
and stipulates safety precautions in the use of the

method.  The introductory material also provides
lexicographic support for an unambiguous reading of
the method description and lists of cited and recom-
mended references.  The procedure is periodically
reviewed and is abridged as necessary.  The dates of
review and the dates and details of changes in the
method are recorded and filed with the introductory
material.

The method description is thorough and detailed.
It includes sections devoted to specimen collection
and handling, reagents and equipment, preparation
and performance of the method, calculation of
results, and quality assurance.  Aspects of specimen
collection to be considered include any special
preparation of the patient for the taking of a speci-
men and the identification of the collection device
and the specimen container.  The handling of the
specimen is detailed as regards anaerobic conditions,
temperature, the allowable time prior to processing,
the method of processing, and the conditions of
storage of the processed specimen.  The list of
reagents stipulates the identity and source of each
reagent and gives instructions for its storage,
handling, and disposal.  The preparation of stock
and working solutions is described and the
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Figure 2.3  Analytical quality goals for method imprecision
and method bias based on a consideration of patient classi-
fication using the reference interval for an analyte.  Impreci-
sion and bias are expressed relative to total biologic
variability.

Table 2.3
Components of a Written Measurement Procedure

Introductory material

Title 
Table of contents
Introduction
Scope
Warning and safety precautions
Definitions
Symbols and abbreviations
References
Dates

Method description

Sampling and specimen handling
Principle of measurement
Reagents
Apparatus
Preparation of measurement system
Use of measurement system
Modifications of the usual procedure for special cases
Calculation of results

Quality assurance program

Analytical performance description

Analytical quality evaluation findings
Method comparison findings



shelf-lives of the solutions are indicated.  The instru-
ments and auxiliary equipment called for by the
method are identified and their operation and mainte-
nance are covered, often by reference to the
manufacturer’s manual.  The procedure for readying
the equipment and the samples (natural samples,
blanks, calibrators, and controls) is indicated.  The
steps involved in the performance of the method are
presented in a sequential fashion; included are the
steps leading to the standby condition, if there is
one, and the steps for closing down the method.  If
the operating steps are different in certain circum-
stances, the modifications of the method and the
circumstances for their application are described.
The mathematical methods for deriving the calibra-
tion function and the measurement function are
described and the algorithm for the calculation of
sample results is given.  The computer software to
be used to perform these calculations is stated.

Quality assurance program
In the broadest possible sense, quality assurance

is concerned with the reliability of the patient data
generated by the laboratory.  It therefore encom-
passes the procedures used to recognize, quantify,
and control the sources of measurement variability
that arise within the laboratory between the receipt
of a specimen and the posting of the study results
(Büttner et al. 1980a).  In its more common usage,
quality assurance refers to the control of the preci-
sion and trueness of laboratory methods.  It is in this
more narrow sense of quality control that quality
assurance will be discussed here.

Internal quality control
Internal quality control refers to the procedures

for quality monitoring, intervention, and remediation
undertaken in a single laboratory (Büttner et al.
1983a, Nix et al. 1987, Petersen et al. 1996).  The
unit of control is typically the set of samples that
constitute one batch of the method.  As mentioned
previously, each batch includes a set of calibrators
for the purpose of constructing a calibration curve
for that batch.  This is done to reduce the variability
that results from between-run calibration variation in
the method.  As this is a quality maintenance goal,
batchwise calibration is properly considered one of
the elements of internal quality control.

Also included in each batch of samples is a set
of control samples for which the measurement result
frequency distributions are known.  Using statistical

tests called control rules to compare the current
results for the control samples with their known
frequency distributions, the trueness and precision of
the method can be monitored.

Control samples are derived from control
material rather than individual patient specimens but
are otherwise handled in a fashion identical to test
samples.  Indeed, valid internal quality control
depends upon the identical treatment of the control
samples and the test samples.  Control material must
come from a large, homogeneous, and stable pool of
material (Büttner et al. 1980c).  The composition of
control material should be as similar as possible to
the composition of the test material used in the
method being controlled.  This requirement is best
satisfied by control material made from human
products but such material is generally biohazardous.
Instead, the most widely used type of control
material is commercially manufactured artificial
material which is contrived to simulate the corre-
sponding test material.

Using the techniques for the assessment of
method quality discussed later in this chapter, the
mean analyte concentration of the control material is
established as is the within-laboratory imprecision in
the measurement of the concentration.  For quality
control purposes, method trueness is then evaluated
in terms of this mean and method precision is evalu-
ated in terms of this SDwithin-laboratory.  This is done
each time a new lot of control material is introduced
into use in the laboratory.

Control rules.  The logic of control rules is best
appreciated by considering the effects that a decline
in method quality has upon the frequency distribu-
tion of control sample results.

Degradation in the quality of a method may be
characterized by an increase in method bias, by an
increase in method imprecision, or by both.  If there
is an increase in method bias, the control sample
results will tend to be displaced from the established
mean value for the control material.  This means that
there will be an increased probability for the control
sample results to be in the region of one of the tails
of the established distribution.  For instance, as
shown in the graph on the left in Figure 2.4, if the
current bias is equal to 1 SDwithin-laboratory, 15.9 percent
of the control sample results will be larger than the
established mean plus 2 SDwithin-laboratory. For the estab-
lished distribution, only 2.3 percent of the control
sample results would be that far above the mean.
On the other tail of the distribution, the bias will
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result in only 0.1 percent rather than 2.3 percent of
the control sample results having values smaller than
the established mean minus 2 SDwithin-laboratory.  The net
effect of the bias is an overall increase in the
percentage of control sample results outside of the
central region of the established distribution, 16.0
percent versus 4.6 percent.  Identical percentages
apply when the bias is negative.

If there is an increase in method imprecision,
there will be an increased probability for the control
sample results to be in the region of the tails of the
established distribution.  An example of this is
shown in the graph on the right in Figure 2.4. For a
1.5-fold increase in imprecision, 9.1 percent of the
control sample results will be more than 2
SDwithin-laboratory larger than the established mean and
9.1 percent of the control sample results will be
more than 2 SDwithin-laboratory smaller than the estab-
lished mean.  Hence, the net effect of the increase in
imprecision is an overall increase from 4.6 to 18.2
in the percentage of control sample results outside of
the central region of the established distribution.

In general, there is an increased probability for
control sample results to be more than 2
SDwithin-laboratory larger or smaller than the established
mean if there is currently a bias in the method or an
increase in the imprecision of the method.  There-
fore, a control sample result of this magnitude can
be taken as a indication of a reduction in method
quality.  This is the statistical basis of the 12s control
rule: a batch of measurements should not be consid-
ered to be in-control if one control result exceeds the
mean plus or minus 2 SDwithin-laboratory.

The performance of this control rule, or any control
rule, is characterized by the relationship between the
probability of rejecting a batch using the rule and the
magnitude of the current change in quality in the
method.  This graphical presentation of this relation-
ship is called the operating characteristic curve.
Figure 2.5 shows the operating characteristic curves
for the 12s control rule when using one to five
control samples per batch.  These curves represent
the operating characteristics of the 12s control rule
for detecting current bias; operating characteristic
curves can also be drawn for the detection of
increased imprecision and a 3-dimensional surface
can be used to present the operating characteristics
for the simultaneous detection of bias and increased
imprecision.  A bias of zero means that the quality
of the method is unchanged so a rejection of a batch
at this value represents a false rejection.  Thus, the
y-intercepts of the curves equal the rates of false
rejection when using the indicated number of control
samples.

In the quality control of a particular method, the
control rule that should be used is the one that most
closely achieves the clinical quality control goals for
performance and false-rejection rate while minimiz-
ing the number of control samples run per batch.
Consider, for instance, a method for which the false-
rejection rate goal is 5 percent and the performance
goal is 90 percent rejection of batches for which the
current method bias is equal to or greater than 2.5
SDwithin-laboratory.  Using the 12s control rule, two
control samples must be run per batch to achieve the
performance goal at the stipulated level of bias.
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Figure 2.4  Frequency distributions of control sample results for a hypothetical laboratory method.  The established distribu-
tion has a mean of 100 µmol/L and an SDwithin-laboratory of 10 µmol/L.  It is shown as a light curve in both graphs.  The current
distributions are shown as dark curves.  In the graph on the left, the method currently has a bias of 10 µmol/L.  In the graph
on the right, the SDwithin-laboratory of the method is currently 15 µmol/L.



However, with two control samples per batch, the
false-rejection rate is too high, 8.9 percent.  Using
the 13s control rule (which states that a batch of
measurements should not be considered to be
in-control if one control result exceeds the mean plus
or minus 3 SDwithin-laboratory), an acceptable false-
rejection rate, 1.6 percent, can be achieved at the
performance goal, but at the expense of requiring six
control samples per batch.  Fewer control samples
per batch can be used while still achieving the
quality control goals if a control rule intermediate
between the 12s and 13s rules is employed.  Specifi-
cally, using three control samples per batch, the
12.385s rule will yield a 5 percent false-rejection rate
and a 90.6 percent rejection rate.  In general, the
best control rules in terms of control sample require-
ments are those for which the control limits have
been calculated to achieve the specific quality
control goals (Bishop and Nix 1993). 

A somewhat different approach to evaluating
control performance is taken when considering the
detection of long-term, or persistent, quality degra-
dation in a method.  Here the focus is on how many
batches will be accepted before the control rule leads
to a batch rejection and, thereby, detection of the
quality problem (Nix et al. 1987).  The most infor-
mative way to present this performance behavior is
as the cumulative run length distribution for the
control rule.  This distribution gives the probability
of having rejected any batch, including the current
batch, as a function of the number of batches run
since the inception of the quality problem.  Figure
2.6 shows the cumulative run length distributions for
the 12s rule at five different levels of persistent

method bias.  The graph also has a line that indicates
the medians of the distributions.  For instance, the
median run length for zero method bias is 15
batches.  That is the median number of consecutive
batches that can be expected to be accepted using
this control rule when the quality of the method is
unchanged.  The median run lengths for the other
levels of persistent method bias in the graph are 9,
4, 2, and 1, in order of increasing bias.  (Note:
average run length is the usual measure for the
evaluation of control rules in the setting of a persis-
tent problem in method quality.  Because run length
frequency distributions are highly right-skewed,
average run lengths will be larger than median run
lengths.  For example, the average run length for the
12s control rule is 22 batches when the quality of the
method is unchanged.  Compare this to the median
value of 15 batches.  Because it is less influenced by
extreme run length values of low probability, median
run length better reflects the run length behavior
expected of a control rule.)

The control rule used to monitor a method for
persistent quality degradation must satisfy the clini-
cal performance and false-rejection quality control
goals for such problems.  The performance goal can
be expressed as maximum median (or average) run
length at a specified level of quality decline in the
method.  The false-rejection quality goal can be
expressed either as an acceptable median run length
when the quality of the method is unchanged or, as
for single-batch quality monitoring, as an acceptable
false-rejection rate per batch.  Typically, single rule
control procedures are not able to provide the
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Figure 2.5  Operating characteristic curves for the detection
of current method bias using the 12s control rule.  Curves
are shown for one to five control samples per batch.
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Figure 2.6  Cumulative run length distributions for the
detection of persistent method bias using the 12s control
rule.  Curves are shown for method bias in half multiples of
SDwithin-laboratory.



requisite combination of performance and false-
rejection rate.  A number of multiple-rule proce-
dures have been proposed that perform much better
than single-rule procedures.  The multiple-rule
procedure of Westgard et al. (1981) has achieved the
greatest popularity.  The rules used in the procedure
are listed in Table 2.4.  The control sample set for
this procedure consists of a low concentration
control sample and high concentration control
sample.  If both control results pass the 12s control
rule using the respective established result distribu-
tions, the batch is considered to be in-control.  If one
of the control results exceeds its 2 SDwithin-laboratory

limits, evaluate the results using the remaining
control rules.  If the results fail to pass any of the
rules, the batch of measurement is rejected.  If the
results pass all of the rules, the batch is in-control.

Cumulative sum procedures and moving average
procedures have also been proposed as tools for
monitoring for persistent degradation in method
quality (Nix et al. 1987, Strike 1996).  The perform-
ance of these approaches in the control of method
trueness has been shown to be superior to that the
multiple-rule procedures (Bishop and Nix 1993,
Parvin 1992).  These approaches are computational
intensive but can easily be implemented in the
modern computerized laboratory.

Test sample-based quality control.  The use of
control material for internal quality control has
several practical problems.  The material is expen-
sive, it may have limited stability, and often its
composition is different from that of the test

samples.  This has prompted the development of
alternative procedures for monitoring method preci-
sion and trueness that use test samples rather than
control material.  These procedures have not been
accepted as replacements for quality control using
control material but many laboratories use them to
supplement their control material-based internal
quality control program.

To monitor within-run precision, a test sample is
divided into aliquots prior to being assayed and the
aliquots are run in the same batch.  The variance of
the replicate results for the test sample is calculated
using the formula,

var = (xi −mean)2

n − 1
where xi is the i th replicate result, mean is the mean
of the replicates, and n is the number of replicates.
If duplicates are used, the formula is,

var = (x1 − x2)
2

Once 20 to 30 such replicate determinations have
been made, the within-run imprecision is estimated
using the formula,

SDwithin−run =
varj
N

where N is the number of test samples studied.  This
estimate is compared to the within-run imprecision
established for the method.  When the next test
sample replicate set is run, its variance is added to
the variance data set and the oldest variance value in
the data set is deleted.  The within-run imprecision
is recalculated and the updated estimate is compared
to the imprecision standard.  Within-laboratory
analytic precision can be evaluated in a similar
fashion by having test sample replicates assayed in
different batches.

To monitor method trueness, the mean value is
calculated for a block of consecutive test sample
results.  The block may consist of a specified
number of results, of all of the results in a batch, or
of all of the results for a defined period of time,
usually a day.  The block mean is compared to the
population mean established for the method.
Assuming that the mix of patients is similar over
time, the mean value of a block of test sample
results will equal the established population mean.
Truncation of the data to exclude extreme result
values improves the performance of the method.
Improved performance also comes from the use of a
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Table 2.4
Multiple-Rule Control Procedure (SD is SDwithin-laboratory)

Warning rule

12s one control result exceeds mean ± 2 SD

Within batch rules

13s one control result exceeds mean ± 3 SD

R4s one control result exceeds mean + 2 SD
one control result exceeds mean – 2 SD

Within and between batch rules

22s two consecutive control results
exceed mean + 2 SD or mean – 2 SD

41s four consecutive control results
exceed mean + 1 SD or mean – 1 SD

10x̄ ten consecutive control results
fall on one or the other side of the mean



smoothing function for the calculation of the mean
values (Gardner 1985, Strike 1996).  Smoothing
leads to a reduction in the variability in the estimates
of the means that would otherwise arise from day-to-
day variation in the makeup of the clinical popula-
tion from which the test samples come.  In addition,
if the test sample mean is recalculated for each
successive result rather than for blocks of results,
method trueness can be continuously monitored,
although continuous monitoring may not offer any
better performance than block-wise monitoring
(Smith and Kroft 1997).

External quality control
External quality control refers to the procedures

for quality control that involve the participation of
two or more laboratories.  Proficiency testing is an
external quality control program mandated by a
regulatory body for the purpose of determining
laboratory quality.  Most commonly, programs of
external quality control are conducted by profes-
sional societies or manufacturers of control
materials.  Control material is provided to participat-
ing laboratories where control samples are assayed
on a regular schedule, usually in conjunction with
the internal control samples.  All of the participating
laboratories receive control material from the same
production lot.  The control sample results are trans-
mitted to the program sponsors who analyze the data
and issue reports that describe the result distributions
among the participating laboratories and indicate the
location of the individual laboratory results within
that distribution.  In this way, external quality
control serves as an adjunct to internal quality
control by providing an additional mechanism for
monitoring the long-term trueness of a method.

There are a number of other important aims
served by external quality control.  These aims
include to provide a measure of the "state of the art"
for the measurement of an analyte; to obtain consen-
sus values for control material when neither defini-
tive nor reference methods exist for the measurement
of an analyte; and, importantly, to investigate the
sources of inter-laboratory variability in the
measurement of an analyte (Büttner et al. 1983b).
By analyzing subgroup results from a large number
of laboratories, it is possible to compare the
performance of different methods and to evaluate the
extent to which inter-laboratory measurement
variability is explained by laboratory variables such
as laboratory size and laboratory workload.

METHOD PRACTICABILITY

Practicability refers to those properties of a
method that relate to practical aspects of its imple-
mentation.  These include speed, cost, technical skill
requirements, dependability, and safety (Büttner et
al. 1980a).  These are clearly important concerns in
the decision to employ a particular method.

The speed of a method is determined by the time
needed for method and sample preparation, the time
spent assaying the sample, and the time required for
calculation of the results.  The time needed for
method preparation is at its longest if specimens are
received infrequently and one-at-a-time, for the
method must then be set up anew for each specimen.
Method preparation is at its shortest if samples are
received and run while the method is maintained in a
fully operational state.  There is sometimes a trade-
off between the speed of a method and its quality.
This may mean that two methods need to be set up
in the same laboratory, a slower method of high
quality that is used for routine work and a rapid
method of lower quality that is used when circum-
stances demand a quick turnaround, provided, of
course, that lower quality results can be tolerated
clinically in exchange for rapidity in obtaining the
results.

The cost of a method includes not only the
expense of the reagents and materials used in sample
preparation and assay, but also capital and operation
costs, such as maintenance and repair costs for the
instrument on which the method is implemented,
labor costs, which will vary depending upon the
technical expertise required of the staff who run the
method, and overhead costs.  Besides its affect upon
method cost, the technical skill requirements of a
method, which determines who on the staff can run
the method, determines when it can be run—only
when the appropriate staff members are scheduled to
be at work.

The dependability of a method quantifies the rate
or frequency with which the method succeeds in
producing valid results.  Dependability is not wholly
intrinsic to the method but can vary from location to
location due to differences in laboratory conditions
and staff quality.  This is particularly relevant when
the method is to be used outside of the central clini-
cal laboratory, in a setting closer to the patient.
Such point-of-care testing may take place in a satel-
lite laboratory, on a hospital ward, in a physician’s
office, or in the home of the patient.  In these
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settings, the personnel are typically trained in the
performance of the method but usually have only a
limited amount of training and experience in general
laboratory practices.  Consequently, the method
needs to be easy to perform and highly reliable if it
is to be dependable.  For home testing, in which the
patient or a family member performs the test, the
need for method ease and reliability is even greater.

Method safety encompasses the whole range of
safety considerations in the performance of a
method.  It includes concerns for the biological,
chemical, and radiation hazards to which the labora-
tory staff may be exposed during the preparation of
samples and the performance of the method and for
the electrical and mechanical safety of equipment
used in the performance of the method.  Safety
considerations may determine who can run the
method and where the method can be set up in the
laboratory.

METHOD EVALUATION

There are two kinds of method evaluations: the
evaluation of a newly developed method, which is
usually undertaken and reported by the laboratory
scientists who devised the method, and the evalua-
tion of a validated method, which is performed by
the laboratorians who are considering setting up the
method in their clinical laboratory.   The first type
of evaluation is ordinarily conducted under the best
possible laboratory conditions and with the loving
attention of the developers.  The second type of
evaluation, which is usually conducted under routine
laboratory conditions, establishes how well a method
performs in the laboratory in which it will be used.
The performance may not be as good as that
reported by the developers because of the differences
in the operating conditions.  That is why on-site
method evaluation is necessary before implementing
any method.  The evaluation of a newly developed
method must be very thorough.  The report of the
evaluation should include the components listed in
Table 2.5.

Laboratory methods are developed for three
reasons.  The first is to provide a method for the
measurement of an analyte which is recognized to be
clinically useful but for which there is no existing
method.  The second is to provide a method with
analytic quality superior to that of other methods
currently in use and the third is to provide a method
of greater practicability than that of currently

available methods.  In an exemplary evaluation of a
new method for determining plasma phosphate
concentration, Luque de Castro et al. (1995) indicate
that their primary motivation for developing the
method was to improve practicability.  The method
uses a flow injection (FI) system with immobilized
enzymes. As they state, immobilized enzymes

have several advantages over the use of
dissolved enzymes in batch assays, such as
lower analytical cost, higher selectivity and
stability, and long life span.

A similar method had already been developed,

Male and Luong (16) developed the first FI
method for the determination of phosphate
with immobilized [nucleoside phosphorylase]
and xanthine oxidase 

but that method used amperometric detection of the
reaction product.  The method of Luque de Castro et
al. produces a different indicator product that is
detected fluorometrically. 

Method description
The description of the method should include the

same items as are found in a written measurement
procedure (Table 2.3).  The level of detail should
also be comparable to that of a written procedure:
using only the method description and general
laboratory knowledge, a reader should be able to
setup and perform the method in his or her clinical
laboratory.

Sampling and specimen handling.  The report
should state the kinds of specimens that can be
assayed using the method.  It should be noted if
special processing is required of some specimens.
For example, urine may need to be diluted prior to
measurement.  The kinds of specimens actually used
in the performance of the method evaluation should
be indicated.
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Table 2.5
Components of a Method Evaluation Report

1. Statement of the motivation for the development
    of the method
2. Description of the method
3. Description of the optimization of analytical variables
4. Characterization of the calibration curve
5. Assessment of analytical quality
6. Determination of analytical range



Principle and method of measurement.  The
statement of the principle of measurement of the
method should include the techniques of analyte
separation and of signal generation and detection.
The phosphate method of Luque de Castro et al.
does not employ an analyte separation step.  The
signal is generated by an enzymatic reaction for
phosphate coupled to the production of an fluores-
cent end-product,

A number of enzymatic methods . . . are
based on the ability of phosphate to activate
some enzymatic reactions catalyzed by
glyceraldehyde-3-phosphate dehydrogenase
(8), phosphorylase a (9), maltose phosphory-
lase (10), sucrose phosphorylase (11), and
nucleoside phosphorylase

The method of Luque de Castro et al. utilizes
nucleoside phosphorylase as the enzyme,

  NP
Inosine + Pi  Ö  hypoxanthine + ribose-5-P

     XOD
Hypoxanthine + 2 H2O  Ö  uric acid + 2 H2O2

            HPOX
p-Hydroxyphenylacetic acid +2 H2O2  Ö

        H2O + bi(p-hydroxyphenylacetic acid)

where NP is nucleoside phosphorylase, XOD is
xanthine oxidase, and HPOX is peroxidase.

The species monitored fluorometrically is the
dimer of p-hydroxyphenylacetic acid (p-HPA),
which exhibits maximum excitation at 325 nm
and maximum emission at 415 nm.

In this method analyte specificity is achieved both by
the use of an enzymatic reaction specific for
phosphate and by the use of fluorometric detection.

Reagents and apparatus.  As in the written
procedure, the method evaluation report should
stipulate the identity and source of reagents and
describe the preparation of stock solutions and
working solutions.  The storage conditions and shelf
lives of the solutions should be stated.  The prepara-
tion of the immobilized enzyme reactors (IMERs) is
of particular note in the method of Luque de Castro
et al.,

NP and XOD were immobilized on
controlled-pore glass (CPG 120-200 mesh;
Electronucleonics, Fairfield, MA) by using
Masoom and Townshend's procedure (17).
Pump tubes of different lengths [1.5 mm
(i.d.)] were then packed with each support-
enzyme conjugate and stored at 4°C in the
following solutions: 100 mmol/L Tris-HCl,
pH 7.0, for the NP immobilized enzyme
reactor (IMER) and 1 mol/L ammonium
sulfate + 0.5 mmol/L sodium salicylate in
100 mmol/L Tris-HCl, pH 7.0, for the XOD
IMER.  Under these conditions both enzyme
reactors kept their activity for at least 3
weeks.

The description of the instruments used in the
method should include a detailed discussion of any
modifications required for the performance of the
method.  In the case of flow injection systems, such
as that of Luque de Castro et al., the flow injection
manifold needs to be described.

The hydrodynamic system used (Fig. 1)
consists of a peristaltic pump that propels the
reagent streams through the channels.  The
sample, diluted appropriately, is injected into
a stream of reagent A, which merges with a
stream of reagent B; reagent B contains
inosine, the substrate for NP biocatalysis.
The first two enzymatic reactions take place
along the NP and XOD IMERs.  An
additional merging point located after the
IMERs allows the main stream to be mixed
with reagent C (which contains p-HPA and
HPOX), which reacts and catalyzes, respec-
tively, the derivatizing reaction of the hydro-
gen peroxide produced in the previous step.
The derivatizing reaction is developed along
the reactor.  Finally, the sample reaches the
flow cell and provides the analytical signal.
The enzyme reactor and the open reactor are
thermostated at 37°C.

Preparation and use of the measurement
system.  In most cases, the preparation and use of
the measurement system is a matter of general
laboratory knowledge so no explicit discussion of
these topics is required.  If the instrumentation is
new or if a familiar instrument is modified or
operated in a novel fashion, the report should
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provide a detailed, preferably stepwise, account of
the performance of the method.

Analysis and optimization of analytical variables
The principal objective in the development of a

laboratory method is to end up with the maximum
possible analytical quality given the level of practica-
bility envisioned by the developers.  To achieve this
goal, it is necessary to identify the optimal combina-
tion of operating set-points for the analytical
variables of the method.  This requires an analysis of
the dependency of the quality endpoints upon the
operating set-points.  Luque de Castro et al.
performed an exceptionally thorough analysis of this
sort in the development of their method.  They used
the magnitude of the analytical signal as the primary
quality endpoint and studied a variety of analytical
variables,

The variables affecting the analytical process
and hence the signal it provided were classi-
fied as chemical, physical, and hydrodynamic
(Table 1), and then studied by univariate
analysis.

The analysis and optimization of the flow injection
variables is described as follows,

High flow rates (2.32 mL/min) decreased the
analytical signal, but low flow rates (0.58
mL/min) decreased the sampling frequency
and resulted in increased dispersion.  A flow
rate of 1.60 mL/min was selected as a
compromise.

A sample volume of 300 µL was chosen to
obtain the best analytical signal, since at
greater volumes the signal remained almost
constant.

The optimal lengths of the enzyme reactors
were 1 cm each.  Using a longer NP IMER
provided a sharp increase in the baseline and a
decreased analytical signal.  Increasing the
XOD IMER did not improve the analytical
signal.

A length of 250 cm for the open reactor was
enough to achieve a reproducible mixture of
reagent C and the main stream, thus providing
optimal analytical signal.

Notice that, even though the primary quality
endpoint was the magnitude of the analytical signal,
the flow rate that was selected as optimal was not the
flow rate resulting in the maximum value of the
signal.  Larger signals were obtained at lower flow
rates.  However, the lower flow rates decreased
measurement precision, a secondary quality
endpoint, and decreased the sampling frequency of
the system, a practicability endpoint.  It is not infre-
quent in method development that the choice of an
optimal analytical variable set-point represents such
a compromise among competing quality and practi-
cability considerations.

A univariate approach to method optimization
was employed by Luque de Castro et al.  In the
univariate approach, the response of a system to the
set-point of one variable is studied with all of the
other variable set-points held constant.  This works
fairly well if all of the variable set-points are held
near to their true optimal values or if the sensitivity
of the system to the set-point of each variable is
largely independent of the set-points of the other
variables.  It works poorly if the approximate values
of the optimal set-points are not known beforehand
and if there is interdependence among the variables
in their effect upon the system response.

A multivariate optimization approach can be
used in circumstances in which the univariate
approach is not likely to perform well.  In the multi-
variate approach, none of the set-points of the
analytical variables are kept constant; instead, the
response of a system to various set-point combina-
tions is studied (Box and Draper 1987).  The combi-
nations are chosen so that they will cover what is a
priori believed to be the most interesting portion of
the multivariate solution space.  This provides data
points on the response surface, the multi-dimensional
surface that characterizes the relationship between
system response and the set-points of the analytical
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variables.   These points can be used to fit a
response surface model, if a functional form for the
surface is suggested by the data.  The optimal
set-point combination can then be calculated from
the model equation.   Alternatively, the data points
can be used as a starting point for an empirical
search algorithm.  Search algorithms seek out optima
in an iterative fashion: using the response data from
the preceding step, the algorithms indicate the most
informative set-point combinations to test next.  The
iterations continue until the maximum system
response and its associated set-point combination is
identified.  The popular search algorithms are highly
efficient and rapidly converge to the response
surface optimum.  This means that the delineation of
the optimal analytical variable set-point combination
for a new method can be achieved without undue
expense.  Multivariate optimization should,
therefore, be considered whenever there is uncer-
tainty about the validity of the univariate optimiza-
tion approach.

Characterization of the calibration curve
The most common form for the equation of the

calibration curve is a straight line. Sentiments of the
sort, “Linearity is a state sought by all clinical
laboratorians.  It means straight and predictable,
good work, and good value” (Passey and Maluf
1992) are common despite the fact that there are
measurement systems in the clinical laboratory, such
as competitive immunoassay systems, that produce
results of high quality despite having nonlinear
calibration curves.  Nevertheless, when calibration
linearity is possible, considerable efforts are made to
assure that the operating conditions for a measure-
ment system yield a linear calibration curve.   

In order to evaluate the linearity of a calibration
curve, a measure or test of linearity is needed.  Such
a measure has not proven easy to come by.  Tholen
(1992) listed 22 different statistical techniques that
had been proposed for evaluating calibration linear-
ity up to the time he wrote his review.  Since then, a
technique developed by Kroll and Emancipator
(1993, Emancipator and Kroll 1993) has achieved a
degree of acceptance in the laboratory medicine
community as a linearity measure.  That technique is
based upon the quantification of nonlinearity as the
root mean square of the deviation of the calibration
curve from an ideal straight line,

nonlinearity =
¶xlow

xhigh(c(x) − g(x))2dx
xhigh − xlow

where c(x) is the equation of the curve that best fits
the empirical calibration data, g(x) is the equation of
the ideal straight line fit of the data, and xhigh and xlow

are the values of the high and low calibrators,
respectively.  Defining the relative nonlinearity as,

relative nonlinearity =
nonlinearity
yhigh − ylow

where yhigh and ylow are the highest and lowest signal
magnitudes recorded during the linearity study,
Emancipator and Kroll (1993) found that calibration
curves that are acceptably linear by visual inspection
have relative nonlinearities of less than 2.5%.  Using
this technique, Luque de Castro et al. found that
their phosphate method demonstrated acceptable
linearity over the range of measurement, 

The linearity of the method was assessed by
means of Kroll and Emancipator's procedure
(18,19) recently adopted by the College of
American Pathologists (20).  the . . . nonline-
arity was 0.063 mmol/L; the relative nonline-
arity, 1.29%.

A number of practical considerations are
involved in the implementation of the technique of
Kroll and Emancipator.  The number and spacing of
the calibrators need to be chosen.  Kroll and
Emancipator suggest using 5 equally spaced calibra-
tors.  This scheme will reveal both monotonic and
sigmoidal nonlinearity.  In cases in which the curva-
ture in the calibration curve appears to be limited to
one or the either end of the curve, such as when
there is concavity at the high end of a calibration
curve for a method which suffers substrate exhaus-
tion at high analyte concentrations, it may be neces-
sary to add additional calibrators within the suspect
interval.  Each calibrator should be run in replicate.
The number of replicates needed depends upon the
measurement variability of the method: for highly
precise methods, duplicates are adequate; for
methods that are imprecise, quintuplicates are
warranted.  Most authors report the use of
triplicates, a convenient compromise number.  The
replicates should be between-run rather than within-
run (Kroll and Emancipator 1993, Emancipator and
Kroll 1993).
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The formula for nonlinearity requires two
equations, one for the curve that best fits the empiri-
cal calibration data and one for the ideal straight line
fit of the data.  Kroll and Emancipator recommend,
and themselves use, polynomial equations to derive
the best fit curve.  Polynomial equations are a good
choice because they can be readily fit to the data by
weighted multiple linear regression and they are also
easy to integrate.  The ideal straight line fit is the
line that results in the minimum value for nonlinear-
ity.  Formulas for calculating the slope and intercept
of this line can be found in Emancipator and Kroll
(1993).  Note that these equations refer to the
calibration curve and, as such, relate the calibrator
concentration to the signal magnitude.  The y data in
a linearity study, therefore, are signal magnitudes.
Luque de Castro et al. properly used the strength of
the fluorescence signal as the y variable in the
linearity study of their method,

A series of eight standard solutions with
concentrations between 0.1 and 20.0 µmol/L
were prepared from the phosphate solution
described in Materials and Methods.  The
equation of the analytical signal obtained by
triplicate injection of these standards into the
FI manifold was as follows: fluorescence
intensity = 27.5 + 49.2 [Pi] (µmol/L)

Some authors report using measurement results
rather than signal magnitudes as the y data.  This is
improper and, even more to the point, paradoxical in
that the calibration curve is the matter under study;
without a calibration curve there cannot be a
measurement curve and, in turn, there cannot be
measurement results.

Assessment of analytical quality
The quality of an analytical method is assessed

through a characterization of the method trueness
and the method precision.

Trueness.  As discussed earlier, trueness is the
closeness of agreement between  the true value of an
analyte and the average value obtained from a large
number of replicate measurements.  To evaluate the
trueness of a method it is, therefore, necessary to
know the true analyte value in a sample.  Indeed, it
is necessary to know the true value in a number of
samples with analyte concentrations that vary across
the proposed range of measurement of the method.
This requirement can be met in either of two ways.

If the method evaluators have access to a reference
method for the measurement of the analyte, the true
concentrations can be determined in clinical samples
from the evaluators’ laboratory.  Otherwise, the
evaluators can use certified reference material for
which the true concentration of the analyte of inter-
est have been determined by the certifying agency
through the use of reference or definitive methods.

The steps in the characterization of the trueness
of a laboratory method are depicted in Figure 2.7.
Between-run replicate measurements are made of the
samples with known analyte concentration (top
graph).  At least 5 replicate measurements should be
performed and 10 is preferred.  The average value
of each set of replicates is computed and the differ-
ences between the averages and the true values are
calculated.  The differences, which represent the
bias of the method at the sampled analyte concentra-
tions, are plotted (middle graph).  In order to
characterize the bias at all concentrations within the
range of measurement, a linear bias model is fit to
the data using weighted linear regression.  Bias is
classified as being constant if the constant term of
the model is nonzero.  It is classified as proportional
if the slope of the model is nonzero.  In the example,
the bias shows a mixed pattern.

The graph of the bias model is referred to as a
bias profile (Keller and Passing 1989).  The bias
profile can be graphed in terms of absolute bias
(middle graph) or relative bias, which is the ratio of
the bias to the analyte concentration expressed as
percent (bottom graph).  It is especially useful to
graph the bias profile in relative terms because
method bias criteria, which are rules for deciding if
a method shows adequate trueness for clinical
purposes, are usually expressed in relative rather
than absolute terms.  A bias criterion can therefore
be plotted on the same graph as the bias profile and
the interval over which the method meets the crite-
rion can be easily appreciated.  An example of this is
shown in the bottom graph.  The bias criterion
depicted is a relative bias of less than 10%.  The
relative bias of the method satisfies the criterion at
analyte concentrations greater than 19 units.

Recovery.  If method evaluators do not have
access to a reference or definitive method and if
there are no readily available certified reference
materials, method trueness cannot be evaluated by
the approach outlined in the preceding section.
Trueness must then be evaluated by means of a
recovery study.  A known amount of analyte is
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added to a clinical sample and the increment in
analyte concentration as measured by the method is
compared to the increment in concentration calcu-
lated from the sample volume and amount of analyte

added.  The comparison is usually expressed in
terms of the percentage recovery,

   recovery =

    measured concentration increment
predicted concentration increment % 100%

Using multiple aliquots of a clinical sample with a
low initial analyte concentration, a number of recov-
ery samples of varying final concentrations are
made.  The concentrations should span the proposed
range of measurement of the method.  Between 5
and 10 between-run replicate determinations are
performed on each of the recovery samples and the
average recovery at each addition level is calculated.
Luque de Castro et al. used a recovery study to
evaluate trueness in their method evaluation,

Two aliquots of six samples were subjected to
additions of standards (0.5 and 1.7 mmol/L)
to establish the recovery of the method.  The
results obtained (Table 3) ranged from 96% to
104%, which represent a good recovery for
the supplemented samples.

There are two potential problems with recovery
studies that should be kept in mind.  First, the calcu-
lated increment in concentration in a recovery
sample is subject to error due to possible errors in
the amount of analyte added or in the measurement
of the volume of the sample.  Second, unless a clini-
cal sample with a very low analyte concentration can
be found, the trueness of the method is studied only
in the higher concentration range (initial analyte
concentration plus added analyte concentration).

Cross-reactions and interferences.  Method
trueness is also evaluated by studying the effects of
potential interfering and cross-reacting substances.
Usually the substances are studied one at a time.
The potential interferent or cross-reactant is added to
a clinical sample and the change in the analyte
concentration is measured.  The effects of the
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Figure 2.7 The bias of a hypothetical laboratory method.
The top graph shows replicate measurement data (symbols)
and the line of identity.  The middle graph shows the empiri-
cal biases (symbols) and the linear model fit (line). The
bottom graph shows the relative bias profile (curve) and a
bias criterion (line).



substance are most often expressed in terms of
percent change in measured analyte concentration.
The substance is evaluated over the range of
substance concentrations that spans the anticipated
clinical range for the substance so that the effects
can be related to the concentration of the substance,
usually by use of a linear model.  This one-at-a-time
approach that was taken by Luque de Castro et al.,

The effects of bilirubin and hemoglobin as
potential optical interferences and of uric acid,
ascorbic acid, xanthine, hypoxanthine, and
glucose as possible chemical interferences
were studied.  Each compound was added to a
pool of serum (phosphate concentration 1.25
mmol/L) and its influence established.  No
interferences were detected from bilirubin for
concentrations <600 mg/L, hemoglobin <20
g/L, uric acid <150 mg/L, ascorbic acid
<75 mg/L, and glucose <200 mmol/L . . .
The presence of allopurinol < 200 mg/L in
serum did not cause interference; it did cause
an error of ~ -4% at 400 mg/L.

Xanthine and hypoxanthine, which are substrates of
the second enzymatic reaction, produced a positive
interference, which presumably was proportional to
the concentration of the added substance.  The
authors comment that interference from these
substances in the clinical setting should be "no
special problem" because they are "present in serum
very infrequently."

The one-at-a-time approach will not reveal
complex chemical interactions such as those occur
between an interferent or cross-reactant and the
analyte and those that occur between different inter-
ferents and cross-reactants.  Quantitative evaluation
of complex interferences and cross-reactions requires
a response surface modeling approach similar to that
discussed in the section on optimization of analytical
variables (Kroll and Chesler 1992).  In this
approach, the potential interferents and cross-
reactants are added in varying concentrations to each
aliquot of the clinical sample.  For a complete facto-
rial design, all possible combinations of the various
concentrations for each of the interferents and cross-
reactants are studied (Box and Draper 1987).  The
measured analyte concentrations are fit to an
response surface model by multiple regression analy-
sis.  A model limited to first-order and interaction
terms is usually used, such as the following ,

analyte concentration =

b0 + b1x1 + b2x2 + b12x1x2

for two interferents where x1 and x2 are the concen-
trations of the respective interferents and b0 repre-
sents the concentration of analyte in a sample free of
interferents.

The presence of complex chemical interactions is
indicated by statistically significance of the coeffi-
cients of the interaction terms.  The clinical signifi-
cance of an interaction depends upon the magnitude
of the interaction effects.

Precision.  Figure 2.8 illustrates the steps in the
characterization of the precision of a method.  Repli-
cate measurements are made using samples with
analyte concentrations that span the measurement
(top graph).  If within-run imprecision is being
studied, all of the measurements on a sample must
be made during the same run.  In a study of within-
laboratory imprecision, the measurements on a
sample need to be performed during different runs
and, preferably, on different days.  An absolute
minimum of 10 replicate measurements need to be
made to obtain a moderately precise estimate of the
standard deviation; 20 replicates is better and 50
replicates is better still (Sadler and Smith 1990).

The standard deviation of each set of replicate
measurements is calculated using the formula
(Bookbinder and Panosian 1986),

standard deviation = 
(xi −mean)2

n − 1

where xi is the i th replicate result, mean is the mean
of the replicates, and n is the number of replicates.
The standard deviations are plotted versus analyte
concentration.  If the imprecision is constant over
the measurement range, the empirical standard
deviations will be roughly equal and will form a
fairly flat line.  If the imprecision is proportional to
analyte concentration, the empirical standard devia-
tions will increase in magnitude with increasing
analyte concentration.  The imprecision model that is
usually fit to the empirical data is the 3-parameter
model proposed by Sadler et al. (1988),

SD = (b0 + b1 concentration)b2

This model is quite flexible.  If b2 is one, the model
defines a line.  Otherwise, the model defines a curve
that can be either convex (b2 greater than one) or
concave (b2 less than one).  Because the model is
nonlinear, it must be fit by nonlinear regression.
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The graph of the imprecision model was origi-
nally called a precision profile (Ekins 1983) but the
designation, imprecision profile, has become more
popular.  The y-axis of the imprecision profile can

be either the magnitude of the standard deviation
(middle graph) or the magnitude of the coefficient of
variation (bottom graph).  Almost always, impreci-
sion profiles are graphed with imprecision quantified
as coefficient of variation.  The reason is similar to
that for graphing the bias profile in relative terms:
method precision criteria are expressed in relative
terms, i.e. as coefficients of variation, so they can
be plotted on the same graph as the imprecision
profiles.  A method precision criterion of 30% is
plotted in the bottom graph.  The precision of the
method satisfies the criterion at analyte concentra-
tions greater than 11 units.

In the phosphate method evaluated by Luque de
Castro et al., within-run and between-run precision
were evaluated at three different concentrations,

The precision . . . of the method was checked
by assaying three serum pool samples from a
clinical laboratory that contained low,
medium, and high concentrations of phosphate
(~0.900, 1.070, and 1.700 mmol/L, respec-
tively).  Aliquots of the three samples were
analyzed after a 1:250 dilution, both in single
run and during 11 days for within- and
between-run studies, respectively.

Because the range of measurement is small, three
concentrations seems an adequate number to study.
Typically, the range of measurement is much larger
and a greater number of concentrations need to be
studied.  The authors did not model the precision
data even though neither within-run nor between-run
precision appear to be constant.

The preceding discussion and example describe
the separate evaluation of within-run and between-
run precision.  This is a straightforward and clear-
cut way to conduct a precision study but it isn’t the
only way that such studies are performed.  Often, a
few within-run replicates are assayed in each of a
large number of runs and both within-run precision
and between-run precision are computed from the
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Figure 2.8 The precision of a hypothetical laboratory
method.  The top graph shows replicate measurement data
(symbols) and the line of identity.  The middle graph shows
the empirical standard deviations (symbols) and the impre-
cision model fit (curve). The bottom graph shows the
relative imprecision profile (curve) and a precision criterion
(line).



resulting data set.  The variance of the replicate
results for each run is calculated using the formula,

varj= 
(xi −meanj)2

n − 1

where xi is the i th replicate result in run j, meanj is
the mean of the replicates in run j, and n is the
number of replicates assayed per run.  If only two
replicates are assayed per run, n-1 is set equal to 2
not to 1.  This biases the analysis somewhat, so it is
better to assay three or more replicates per run.
Within-run variance is calculated as the average of
the individual run variances so, 

SDwithin-run = 
varj
N

where N is the number of runs.  The variance of the
individual run replicate means is computed using the
formula,

varmeans= 
(meanj − overall mean)2

N − 1
where overall mean is the mean value of the individ-
ual run replicate means.  Then (Box et al. 1978),

SDbetween-run = varmeans −
SDwithin−run

2

n

A point that needs to be mentioned in any
discussion of method precision is that within-run
precision can always be improved by measuring
samples in duplicate or triplicate and reporting the
average value of the results.  With replicate
measurements, the imprecision decreases by a factor
equal to the square root of the number of replicates.
For duplicate measurements, the within-run impreci-
sion is 0.71 times as large as with single measure-
ments and with triplicate measurements, it is 0.58
times as large.  This approach is costly in that fewer
samples can be run per batch but the resultant
improvement in method precision may significantly
increase the clinical utility of the method. 

Resolving power and detection limit.  The
resolving power of a method is expressed in terms of
the minimum distinguishable difference in concen-
tration, Dmin.  Using the formula,

Dmin = zc SDwithin-laboratory2

the resolution profile for a method can be calculated
from the imprecision model, giving,

Dmin = zc (b0 + b1 concentration)b22

where the model parameters b0, b1, and b2 apply to
within-laboratory imprecision.

The detection limit can be calculated as the
smallest concentration that solves the equation

concentration =
 zc (b0 + b1 concentration)b22

An approximate solution can be found graphically
from a plot of the resolution profile.  It is the
concentration at which the resolution profile inter-
sects the line of identity.  Using this starting value,
the exact solution can be found using an iterative
root solving algorithm such as Newton’s method
(Sadler et al. 1992).  Such algorithms are now
widely available in computer spreadsheet programs.

An alternative and more direct way of calculat-
ing the detection limit is to use the imprecision data
from the replicate sets with concentrations that are
near the detection limit.  Typically, the zero concen-
tration replicate set and the lowest concentration
replicate set are used.  The variances of the data sets
are calculated (varzero and varlow) as is the pooled
variance,

varpool = n1varzero + n2varlow
n1 + n2 − 2

where n1 and n2 are the number of replicates in the
zero concentration and low concentration data sets,
respectively.  The detection limit is calculated using
the following formula (Rodbard 1978, Büttner et al.
1980b),

detection limit = blank - tc varpool 1
n1 + 1

n2

where blank is the mean value of the zero concentra-
tion replicate set and tc is the confidence coefficient
as found with the t distribution.  For a 95% confi-
dence level and equal numbers of replicates in each
data set, tc equals 1.734 for 20 replicates, 1.701 for
30 replicates, 1.686 for 40 replicates, and 1.677 for
50 replicates.  

Analytical range
The analytical range, or working range, is the

range of analyte concentrations for which the method
satisfies all of the following criteria: the bias of the
method is within acceptable limits, the precision of
the method is within acceptable limits, and, if appro-
priate, the calibration curve is acceptably linear.
The range is determined by reference to the bias
profile, the imprecision profile, and the findings of
the linearity study.
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It is obviously desirable that the analytical range
cover the entirety of the pathophysiological range of
values for the analyte measured by the method.  If
the analytical range falls short, explicit rules need to
be devised to deal with samples that have analyte
concentrations outside of the analytical range.  In
practice, this problem is almost always due to
samples with analyte concentrations that are above
the upper limit of the analytical range.  The question
in such cases is if appropriate dilution of the sample
will yield a valid measurement. If so, the dilution
procedure and the means for calculating a corrected
result need to be included in the method procedure.
If not, the manner of reporting the out-of-bound
result needs to be specified in the procedure.

METHOD COMPARISON

The purpose of a method comparison is to ascer-
tain if the test results for a set of clinical specimens
as obtained from one field method are, on average,
the same as those obtained by another field method.
The comparison amounts to a exploration of the
clinical equivalence of the two methods.  Clinically
equivalent methods can be freely substituted for one
another.  The substitution of a method for another
with which it is not clinically equivalent requires the
establishment of a new reference interval for the
analyte being measured and the development of a
conversion formula that can be used to equate test
results from the old method with test results from
the new study.

Motivation
A complete report of a method comparison

includes the components listed in Table 2.6.  The
first component is a statement of the motivation for
the comparison.  The most common motivation is
the contemplated replacement of a method with one
that possesses greater practicability.

The following excerpt from Turpeinen et al.
(1995) explains their motivation for undertaking a
comparison of three different methods for measuring
hemoglobin A1c (HbA1c).  HbA1c is a stable adduct of
glucose and hemoglobin A.  The percent of
hemoglobin present as HbA1c depends upon the
blood glucose concentrations to which the hemoglo-
bin is exposed over the life-span of the red cell and
is, therefore, a useful clinical marker of long-term
blood glucose concentration control in patients with
diabetes.

. . . the methods currently used for [HbA1c]
measurement in clinical chemistry laboratories
show large differences between reported
values, and comparison of results from differ-
ent laboratories is difficult.

At present there is no accepted standard or
acknowledged reference method.  Recently,
calibration based on a cation-exchange HPLC
method has been shown to increase the
comparability between various analytical
methods (5,6).

In this study we compare our own high-
resolution HPLC cation-exchange method
(PolyCAT A) with two other assays: a
boronate affinity binding assay (IMx) and an
automated system for [glycohemoglobin]
analysis by cation-exchange chromatography
(Diamat ™).

The motivation for this method comparison is to
compare two commercially available methods for the
determination of HbA1c.  In addition, the methods
are compared with a high-resolution version of the
methodology that has been gaining support as a
calibrating method, cation-exchange
chromatography.  In this instance, it can be appreci-
ated that the employment of cation-exchange as a
calibrating method can be taken as tacit acknowledg-
ment that it is of adequate accuracy for routine
laboratory practice and, indeed, is probably more
accurate than most other methods in routine use.

Analytical methods
When comparing methods, it is of course essen-

tial that it be clear exactly what the methods are.  It
therefore behooves the laboratorian to thoroughly
describe the methods under study.  In fact, it is
appropriate to provide the same degree of complete-
ness in the method description as one would for a
method evaluation.  However, it may be possible to
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cite a previously published description of the method
or to refer to the manufacturer’s instructions when a
commercial method is being studied.  When any
options exist in the performance of a method, the
options chosen should be indicated.

Study population
Method comparison studies are performed using

clinical specimens that have been submitted to the
laboratory in the course of the medical care of
patients.  Most often, the specimens that are used are
those that have been submitted for determination of
the analyte measured by the methods under study.
This is an obvious necessity in the case of xenobiot-
ics but it also makes sense for other kinds of analytes
because the range of values for the analyte is usually
largest among those patients in whom the analyte is
being measured.  For instance, HbA1c concentrations
are only measured in patients with diabetes.  These
patients have values that range from normal to
greatly increased with the majority being slightly to
moderately elevated.  A random sampling of labora-
tory specimens would be expected to uncover only a
few specimens with elevated concentrations.  In
keeping with this logic, in their comparison study,
Turpeinen et al. utilized specimens obtained from
patients with diabetes: 

For method comparison we used 123 blood
samples obtained mainly from diabetics sent to
our routine laboratory for HbA1c analysis.

A wide clinical spectrum should be represented
by the specimens used in a method comparison
study.  This is important for two reasons.  First, the
range of values of the analyte often relates to the
spectrum of disease in the patients from whom the
specimens are obtained.  For instance, if the speci-
mens that are submitted to the routine laboratory for
HbA1c analysis come almost exclusively from outpa-
tients whose disease is well controlled, the values
will be for the most part normal or slightly
increased.  The concordance of the methods in this
range may not reflect the concordance at the high
values seen in patients whose disease is out-of-
control.  The HbA1c values reported by Turpeinen et
al. in their article include many above 10% of total
hemoglobin, indicating moderate to severe chronic
hyperglycemia, so their clinical population clearly
encompasses a broad spectrum of glycemic control.
The second reason to seek a broad clinical spectrum

is to guarantee a wide spectrum of biochemical
variability.  The wider the biochemical spectrum,
the more likely it is that measurement differences
due to differential method specificity will be
detected. 

Evaluation of concordance
There are two general approaches for the evalua-

tion of concordance between the results of field
methods, regression analysis and difference analysis.
Correlation analysis is not a useful approach for
evaluating concordance for a number of reasons
(Bland and Altman 1986, Hollis 1996).  First and
foremost of these is that the correlation coefficient is
not a measure of agreement between data pairs but,
rather, is a measure of the goodness-of-fit of a linear
model of the data pairs.  Thus, for example, data
pairs that are aligned along the line,

resultmethod 2 = 10 + 2 resultmethod 1 

will have a perfect correlation coefficient despite the
fact that the data pairs do not agree at all.  Another
problem with the correlation coefficient is that its
value depends upon the range of the data analyzed.
The wider the range, the larger the correlation
coefficient.  In this way, the inclusion of extreme
data pairs, even pairs with less than average agree-
ment, will inflate the value.  Yet another problem
with the correlation coefficient is that it reflects data
variability as well as data linearity.  As a result, the
correlation coefficient of two highly precise methods
that, on average, do not agree particularly well may
be larger than the correlation coefficient of two less
precise methods that, on average, agree very well.

Regression analysis. The goal of regression
analysis, which has been the standard approach for
concordance evaluation for decades, is to define the
functional relationship between the results of the
methods so that it can be compared to the relation-
ship that characterizes ideal concordance.   In prac-
tice, this means using a linear regression technique
to find the equation of the line that best fits the
paired result data,

resultmethod 2 = b0 + b1 resultmethod 1 

The estimated values of the intercept and the slope
are compared to the values expected for perfect
concordance, i.e. an intercept of zero and a slope of
one.

Turpeinen et al. used the Deming technique of
linear regression in their comparison study.  The
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more familiar technique of ordinary linear regression
analysis has as one of its underlying assumptions that
the x variable has no appreciable measurement
variability (Berry 1993).  In order for this assump-
tion to be satisfied, the variability in the x variable
must be small compared to the variability in the y
variable.  In method comparison studies, however, it
is typical for the x variable, i.e. the test results
obtained using one method, to have a variability
comparable to that of the y variable, the test results
obtained using the other method.  Consequently,
ordinary regression analysis is usually not an appro-
priate regression technique for a method comparison
study.  Instead, one must use a linear regression
technique that takes into account variability in the
measurement of the x variable.  One such “errors-in-
variables” technique is the Deming method (Strike
1996).  It has been found to be among the most
reliable of the errors-in-variables linear regression
techniques (Wakkers et al. 1975, Riggs et al. 1978,
Linnet 1993).  Weighted regression modifications of
the Deming method are available for data sets in
which the variance of the data pairs is not constant
over the range of measurement (Riggs et al. 1978,
Linnet 1990, 1993).  The modification developed by
Linnet applies to data sets in which the variance
increases proportionally with analyte concentration.

Turpeinen et al. present graphs of the data and
regression lines for each of the three method
pairings.  For the IMx and Diamat method pairing
the graph is:

The authors found that the IMx and Diamat
methods showed the best result concordance by (un-
weighted) Deming regression (note that the authors
have been careless in their terminology, when they
write “correlation” they mean “regression”),

The correlation between IMx, calculated as
%HbA1c, and the Bio-Rad Diamat (Fig 2A)
gave the following results: IMx = 1.16
Diamat - 0.98 (r = 0.922).  The good correla-
tion is explained by the fact that the IMx assay
has been standardized with an ionexchange
HPLC method, with the Diamat assay as a
secondary reference HPLC system maintained
in close calibration to the primary reference
HPLC assay.

  The 95% confidence intervals on the estimates
of the slope and intercept are 1.152 to 1.170 and
-0.986 to -0.980, respectively.  The confidence
interval for the slope does not include 1 so the
estimate is statistically different from 1.  The confi-
dence interval for the intercept does not include 0 so
it is statistically different from 0.  As neither
parameter is equal to the value expected of perfect
concordance, bias is present.  When the intercept is
not 0, the data are said to show constant bias.  When
the slope is not equal to 1, the data show propor-
tional bias.  When both parameters do not equal
their ideal values, as here, the bias is referred to as
mixed constant and proportional.  The paper states

the confidence limits for the slope and inter-
cept values were calculated with the jackknife
method

The jackknife method is a nonparametric technique
for generating empirical likelihood distributions for
the parameters of a statistical model (Mooney and
Duval 1993).  In this case, the statistical model is a
line and the parameters are its slope and intercept.
The jackknife method has been found to be a reliable
way to calculate the parameter confidence intervals
when either unweighted or weighted Deming regres-
sion is used (Linnet 1993).  Parametric approaches
for the calculation of the confidence intervals can be
used if the methods have relatively constant variabil-
ity over the clinical range of values for the analyte.
Calculation of the exact confidence intervals is
complex (Creasy 1956) but highly accurate, simple
approximations are available (Strike 1996).  The
approximate confidence interval for the slope is,

b1 ± tc standard error of b1

in which

standard error of b1= b12 (1 − r2) / r2

n − 2
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where r2 is the square of the correlation coefficient
and n is the number of data pairs.  The approximate
confidence interval for the intercept is,

b0 ± tc standard error of b1 x2
n

where Σ x2 is the sum of the squared x values.
The graph of the data and Deming regression

line for the Diamat and PolyCAT A pairing is: 

The result concordance of these methods is much
less good that that between the Diamat and IMX
methods:

When the two ion-exchange chromatographic
methods, PolyCAT A and Diamat, were
compared (Fig 2B) . . . the regression
equation (PolyCAT A = 1.03 Diamat - 2.84)
shows that much lower results were obtained
by ion-exchange chromatography with high
resolution.

The 95% confidence intervals on the estimates of the
slope and intercept are 1.026 to 1.038 and -2.842 to
-2.834, respectively.  Although the slope is statisti-
cally different from 1, the difference is small, so the
authors conclude that the lack of concordance
appears to be due largely to constant bias.  The
authors offer the following explanation for the bias:

This might be due to the fact that the Diamat
method also measures carbamylated and acety-
lated forms of Hb … and possibly some other
derivatives formed in blood during storage,
which can be separated from the HbA1c peak
by using methods with higher resolution.  Our
PolyCAT A assay has been optimized to
separate different Hb variants from HbA1c.

This apparently partly explains the lower
results obtained by this method.  However,
the difference between Diamat method and
PolyCAT A assay cannot be explained only by
carbamylated and acetylated Hbs, for which
concentrations <0.4% have been reported …

Difference analysis.  Difference analysis was
introduced as an approach for evaluating method
comparisons by Altman and Bland (1983).  This
approach strives to avoid the shortcomings of
ordinary regression analysis for method comparison
by directly measuring how well each result pair
agrees in terms of the difference in the values of the
results.  The differences are plotted against the
average values of the result pairs (Bland and Altman
1986, Hollis 1996) or, as in the article by Turpei-
nen et al., the differences are plotted against the
results of one of the methods.  In the comparison of
the IMx and Diamat methods, the plot, called a
difference plot, is:

Examination of the difference plot suggests that
there is a small inter-method bias present because
there are more negative differences than positive
differences.  If there were no bias present, the
differences would be evenly distributed about the
line of zero difference. The authors describe the
pattern as follows:

The bias observed (Fig 3A) suggests that the
IMx method gives slightly higher results than
the Diamat method at high amounts but
similar results at normal amounts of HbA1c.

The difference plot for the Diamat and PolyCAT A
method pairing is:
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Here the bias is clear.  The authors comment:

The differential plots show that the negative
bias of ~ 2-3% of total BB is seen at all
values of HbA1c when PolyCAT A is
compared with Diamat

Assessment of clinical equivalence
As stated earlier, clinical equivalence of two

analytical methods means that they can be used inter-
changeably.  In practical terms, clinical equivalence
means two things: that the results of the two
methods show a high degree of concordance and that
the reference ranges for the measured analyte, as
determined using the two methods, are essentially
identical.  The degree of concordance and the close-
ness of the agreement of the reference ranges that
are required in order to consider two method clini-
cally equivalent are matters of clinical judgment
which may be codified in recommendations promul-
gated by professional societies or in standards
imposed by regulatory agencies.  Statistical evidence
is important in coming to this decision but it is not
the only consideration.  For instance, the confidence
interval for the estimate of the intercept of the
regression line for paired results may indicate that it
is statistically different from zero.  This indicates the
presence of a bias in the methods.  However, the
magnitude of the bias may be considered to be clini-
cally insignificant and the results of the methods
deemed to be highly concordant.

Figure 2.9 demonstrates a graphical approach
for judging if two methods are clinical equivalent in
terms of the degree of concordance of the methods.
In this figure the data pairs have been plotted as they

would be for a regression analysis.  The lighter,
inner lines demarcate the region in which 95% of the
data pairs will be if the methods are, on average,
perfectly concordant.  Because each sample is only
measured once by each method in the usual method
comparison, individual method measurement varia-
bility results in less than perfect concordance even if
the methods are, on average, perfectly concordant.
If each sample were measured repeatedly by each
method, the average result values obtained by two
methods that were, on average, perfectly concordant
would show exact agreement.  These boundary lines
are constructed using the formula,

range = analyte concentration ± zc SDresult pairs
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Figure 2.9  Two sets of hypothetical method comparison
data.  The data are shown as symbols.  Clinical equivalence
boundary lines are indicated.



where, for the 95% range, zc equals 1.96, and

SDresult pairs = varmethod 1 + varmethod 2

The width of the range will vary with analyte
concentration if the variance of either method
depends upon the concentration.  In the figure, the
variance was treated as being proportional to analyte
concentration.  The darker, outer lines delimit the
region in which 95% of the data pairs will be if the
methods are concordant to within a clinically accept-
able amount of bias.  These are the clinical equiva-
lence boundary lines.  These boundary lines are
constructed using the formula,

   range = analyte concentration

         ± ( zc SDresult pairs + acceptable bias)

The upper graph in Figure 2.9 shows the
hypothetical results of a comparison of two highly
concordant methods.  All of the data points are
inside of the clinical equivalence boundary lines
(here the bias criterion is a relative bias of less than
7.5%).  Using the approximate formula (Newcombe
1998),

confidence interval =

 
estimate + zc

2

2N ! zc
estimate(1 − estimate)

N +
zc

2

4N

1 + zc2

N
where N is the number of data pairs, the approxi-
mate 95% confidence interval on the proportion is
95.4 to 100%.  Because it is statistically certain that
at least 95% of the data pairs are contained within
the boundary lines, the concordance of the methods
satisfies the criterion for clinical equivalence.  The
lower graph shows hypothetical results from two
methods which are discordant.  Seventy percent of
the data points are inside of the clinical equivalence
boundary lines with a 95% confidence interval of
51.5 to 72.3%.  It is, therefore, statistically certain
that fewer than 95% of the data pairs are contained
within the boundary lines.  Hence, the methods are
not clinically equivalent due, in this case, to the
presence of an unacceptably large inter-method bias.

A similar graphical approach can be taken when
the result data are plotted as differences (Petersen et
al. 1997).  This is shown in Figure 2.10 for the
same hypothetical data that were used to make
Figure 2.9.  Notice that in this figure, the x-axis is
the result as measured by the field method already in
place (method 1).   When plotted in this fashion, the

graphs of the two data sets reveal exactly the same
percentage of data points inside of the clinical
equivalence boundary lines.

Based upon the difference analysis findings,
Turpeinen et al. conclude that the methods they
studied do not demonstrate a clinically acceptable
degree of concordance.  The authors also
constructed reference ranges for HbA1c using two of
the methods under study:

Reference values for the Diamat and PolyCAT
A methods were determined by using 60
freshly drawn blood samples from healthy
controls

They found that the ranges are not similar:

For IMx a reference range of 4.5–5.5% has
been reported (7).  Our estimates [of] the
reference values for HbA1c with the PolyCAT
A and Diamat methods with samples from 60
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Figure 2.10  The same hypothetical method comparison
data as in Figure 2.9 but here presented as difference plots.
The data are shown as symbols.  Clinical equivalence
boundary lines are indicated.



healthy controls were, for Diamat, mean
(±SD) 5.13% ± 0.33%, the reference range
(mean±2SD) 4.5–5.8%, and the total range
4.4–6.1%.  For the PolyCAT A method the
mean (±SD) was 3.43% ± 0.47%, the refer-
ence range 2.5–4.4%, and the range
2.6–5.0%.

Because the methods do not produce identical refer-
ence ranges and because they are not highly concor-
dant, the authors decided that the methods are not
clinically equivalent. 
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