
DIAGNOSTIC STUDY PERFORMANCE

A diagnostic laboratory study is one that is
designed, or has been discovered, to improve the
clinician's ability to discriminate between persons
suffering from a disorder or condition of interest and
persons free from the disorder or condition.  The
degree to which a study accomplishes this discrimi-
nation is referred to as its diagnostic performance.

Sensitivity, specificity, and ROC curves
The fundamental measures of the diagnostic

performance of a laboratory study are its sensitivity
and specificity.  Sensitivity is the frequency with
which a study indicates the correct diagnosis in
persons with the disease.  Specificity is the
frequency with which a study indicates the correct
diagnosis in individuals who are disease-free.

As an example, the data obtained in a clinical
investigation concerned with the laboratory diagnosis
of iron deficiency in infants (Dallman et al. 1981)
can be used to quantify the performance of the
study, transferrin saturation (the ratio of plasma iron
concentration to plasma iron-binding capacity).
Transferrin saturation was determined in capillary
blood specimens from 165 1-year-olds who were
suspected of having iron-deficiency anemia.  Infants
were classified as iron deficient if the transferrin
saturation was less than 10% and as iron replete if
the transferrin saturation was greater than 10%.  The
study classifications, categorized according to the
final diagnostic classification, are presented in Table
3.1.  The numerical entries indicate the number of
study subjects in each category.  The sensitivity of
the study is calculated as the frequency of correct
diagnosis in the iron-deficient infants.  In this case,
the frequency is 29 divided by 55 which equals 0.53.
A little better than one-half of the iron-deficient
infants are properly identified.  The specificity is the
frequency of correct diagnosis in the iron-replete
subjects; here, it is 82 divided by 110 which equals
0.75.  Three quarters of the iron-replete infants are
correctly identified.  A table of classification catego-
ries, as used in the example, can be constructed for
any diagnostic study (Table 3.2).  The designations

true or false and positive and negative are usually
assigned to the categories as shown.  From the table,

sensitivity =
true positives
true disease

and 

specificity =
true negatives

true disease free
Because a study's specificity is determined by

the frequency distribution of results in a stable refer-
ence population, it will remain constant.  There will
be some variability in its measurement because the
composition of the sample of subjects will vary by
chance.  However, as long as the subjects are chosen
at random from the same reference population,
estimates of the study's specificity will cluster
around the value that would be found were the entire
reference population to be studied.  Constancy of
estimation is not true for sensitivity.  The sensitivity
of a diagnostic study is usually greater in individuals
with more advanced or severe forms of a disease.  In
the case of iron deficiency, as the condition persists,
and the iron deficit deepens, all of the diagnostic
studies used to identify iron deficiency, transferrin
saturation included, show increased sensitivity.
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Table 3.1
Classification Categories for Transferrin Saturation

Classification Using Final Diagnostic Classification
Transferrin Saturation

  Iron-replete Iron-deficient

Iron-replete        82       26
Iron-deficient        28       29

Total       110       55

Table 3.2
Classification Categories for a Diagnostic Study

Classification Using Final Diagnostic Classification
Study Result

Disease-free Disease 
Disease free true negative false negative
Disease false positive true positive

Total true disease free true disease



ROC curves.  The diagnostic performance of a
study depends upon the choice of the critical value.
This is the study result used to separate the diagnos-
tic classes.  In the example from Dallman et al.
(1981), the critical value of transferrin saturation
that was used was 10%.  Selection of a different
critical value would have resulted in different values
for sensitivity and specificity.  The set of sensitivity
and specificity pairs that are generated by consider-
ing every possible critical value for a laboratory
study constitute the performance characteristic
function.  This function completely defines the
performance of the study when applied to a given
pair of reference frequency distributions.  Conse-
quently, it is the most informative way to record the
findings from an investigation of the study's
performance (Henderson 1993, Zweig and Campbell
1993, Beck and Shultz 1986).  Using it, one can
identify the critical value that generates a desired
pairing of sensitivity and specificity.

A performance characteristic function for trans-
ferrin saturation can be obtained by again referring
to the data reported by Dallman et al. (1981).  The

authors include in their article histograms indicating
the distribution of study values in the two reference
populations.  Their histograms are recast as
frequency distributions in Figure 3.1.  To construct
the performance characteristic function, first select
an extreme study value (here 0% is a likely choice)
and calculate the sensitivity and specificity that
would result were this the critical value.  No iron-
deficient subject has a transferrin saturation less than
0% so the sensitivity is 0.  All the iron-replete
subjects have saturations greater than 0% so the
specificity is 1.0.  Then, repeat the calculations
using the next permissible value of the study, 5%, as
the critical value.   Since 20 percent of the iron-
deficient infants have transferrin saturations below
5%, the sensitivity is 0.2.  Of the iron-replete
subjects, 4 percent have saturations less than 5% so
only 96 percent of these subjects are correctly identi-
fied.  Thus, the specificity is 0.96.  This procedure
is repeated until all the possible critical values have
been considered.  The results for these data are
shown in Table 3.3.  Performance characteristic
functions are often presented in their graphic form
which, for historical reasons, are called receiver
operating characteristic or ROC curves.  Figure 3.2
(squares) shows the ROC curve for transferrin
saturation.

As discussed in Chapter 1, the distribution of
study results in reference populations can be repre-
sented by frequency distribution models.  Such
modeling yields two significant benefits in the
construction of ROC curves.  First, irregularities in
the empirical data attributable to measurement
variability are smoothed out and, in turn, so are the
derived values of sensitivity and specificity.
Second, gaps in the data corresponding to study
values that were not recorded among the reference
subjects can be filled in.  Indeed, the use of continu-
ous distribution models allows for the construction
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Table 3.3
Performance Characteristic Function for Transferrin
Saturation

Critical Value  Performance Characteristic
Sensitivity Specificity

  0%     0.00     1.00
  5%     0.20     0.96
10%     0.53     0.75
15%     0.76     0.55
20%     0.87     0.32
25%     0.93     0.13
30%     1.00     0.04

Figure 3.1  Reference frequency histograms for transferrin
saturation.
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of continuous ROC curves.  Figure 3.2 (line) shows
the ROC curve that results from modeling the data
of Dallman et al. (1981) with lognormal frequency
distributions.  Another example of ROC curve
construction using lognormal modeling can be found
in Krieg et al. (1989).  ROC curve construction
based on kernel density smoothing is discussed by
Zou et al. (1997).

Variability in study performance.  It is often
mistakenly assumed that one of the reasons that
ROC curves are considered such a useful way to
describe study performance is because the sensitivity
and specificity values that make up the curves are
invariant features of a laboratory study.  In fact,
sensitivity and specificity can vary and even vary
widely.  For instance, study performance can differ
from laboratory to laboratory because of differences
in analytical methodology and in staff and equipment
quality.  Also, study performance can vary from
clinical population to clinical population because of
differences in the spectrum of disease in the different
populations.  Additionally, study performance can
vary over time either as a result of changes in the
methods used to perform the study and or conse-
quent to alterations in the spectrum of disease over
time. 

Clearly, spectrum of disease, which represents
the range in clinical expression and severity of
disease in a clinical population, is an especially

important determinant of study performance.  This is
so because it is rare for a study to yield the same
result regardless of the severity of a disease or the
pathobiologic stage of a disorder.  Examples of
laboratory studies that are essentially invariant are
the chromosome and DNA studies used to diagnose
certain genetic diseases.  However, for the vast
majority of laboratory studies, study results are
affected by the level of activity of or severity of the
disease and the degree to which the disease has
compromised normal body function. Typically, the
more severe the disease or the greater the level of
dysfunction, the greater the displacement of the
study value.  For example, in iron deficiency, the
larger the iron deficit, the smaller the value of trans-
ferrin saturation.  This is illustrated in Figure 3.3 for
iron deficiency resulting from serial phlebotomy.
Transferrin saturation begins to decline once the
body iron stores fall below about 4 mg/kg and
decreases progressively as the iron deficit increases
(Skikne et al. 1990).

Because the location and width of the distribu-
tion of study results in diseased individuals varies
with disease severity and activity, the location and
width of the aggregate distribution of study results in
a clinical population will depend upon the spectrum
of disease in the population.  For instance, in a clini-
cal population consisting mostly of individuals who
have early or mild forms of a disease, individual
study results will tend to be at most modestly abnor-
mal; thus, the aggregate distribution of study results
will usually not be far removed from the distribution
of results in the disease-free members of the
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Figure 3.2  ROC curves for transferrin saturation.  The
squares represent the points constructed from the observed
frequency data (Figure 3.1).  The continuous line is the
curve constructed from the lognormal frequency distribution
models of the data.
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population.  This is the typical situation when
screening for a disease among asymptomatic
individuals and explains the considerable challenge
in finding sensitive screening tests that are also
specific.  On the other extreme, if a clinical popula-
tion consists primarily of patients with advanced or
severe disease, almost all individual study results
will be very abnormal causing the aggregate distri-
bution of study results to be widely separated from
that of the disease-free members of the population.
At any stipulated critical value, the sensitivity of the
study will be much greater in the second population
than in the first.  In addition, the specificity will
usually be less because the disease-free individuals
in the second population almost always have other
medical conditions that explain their presence in this
clinical population—conditions that will tend to
broaden the distribution of study results and thereby
lower the specificity.

Other measures of diagnostic performance
Two alternative measures of diagnostic perform-

ance need to be mentioned.  Both incorporate the
effect that the prevalence of a condition, i.e. the
proportion of persons in the clinical population who
have the condition, will have upon the classification
accuracy of a diagnostic study.  The first measure is
diagnostic efficiency, defined as the overall
frequency of correct diagnostic classifications when
a study is applied in a clinical setting.  Thus, from
Table 3.2,

efficiency = 
true negatives + true positives

true disease free + true disease
The dependence of efficiency upon disease preva-
lence is indicated by redefining it in terms of sensi-
tivity and specificity.  The number of true positives
equals the sensitivity of the study times the number
of tested individuals who have the disease, the
number of tested individuals who have the disease
equals the prevalence times the number of individu-
als individuals, and the number of true negatives
equals the specificity of the study times the number
of tested individuals times one minus the prevalence.
Thus,

  efficiency =
prevalence · sens + (1-prevalence) spec

where sens stands for study sensitivity and spec
stands for study specificity.  This formula reveals
the validity of a number of intuitive insights

regarding the behavior of diagnostic efficiency.
First, when the disease prevalence is low, the
efficiency of a study is determined largely by its
specificity and second, when the disease prevalence
is high, the efficiency of a study depends mostly
upon its sensitivity.

The other alternative measure of diagnostic
performance is the predictive value of a study result.
Predictive value is the frequency with which a classi-
fication study is correct in a given clinical setting,

  predictive value of a positive result =

   
true positives

true positives + false positives =

   
prevalence $ sens

prevalence $ sens + (1 − prevalence) (1 − spec)

  predictive value of a negative result = 
true negatives

true negatives + false negatives =

(1 − prevalence)spec
(1 − prevalence)spec + prevalence (1 − sens)

These definitions, as well as good sense, demon-
strate that the predictive value of a positive study
result increases with increasing prevalence and with
increasing study sensitivity and specificity.  When
the prevalence is low, the probability that a positive
study result is correct is small, unless the study
specificity is nearly one.  This is an extremely
important point when a study is being used to
identify individuals with rare disorders.  The predic-
tive value of a negative study result increases with
decreasing prevalence and with increasing study
sensitivity and specificity.  When the prevalence is
low, the frequency of correct negative study results
is high even when the diagnostic performance of the
study is poor.

Repeating and combining studies
The performance of a diagnostic study can be

altered by repeating the study or by using the study
in combination with one or more other diagnostic
studies. The performance that results from such
multiple testing depends largely upon two new
considerations: the positivity rule used to make the
ultimate diagnostic classifications and the classifica-
tion correlation between repeated tests or among
combinations of tests.

Repeat testing.  The two most frequently used
positivity rules for repeat testing are illustrated in the
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following example.  The single test diagnostic
performance of transferrin saturation at the critical
value of 10% saturation recommended by Dallman
et al. (1981) consists of a sensitivity of 0.53 and a
specificity of 0.75.  What happens if the study is
repeated in the same patients?  If there is no classifi-
cation correlation between the initial and repeat
study—that is, if the performance characteristics of
the study in the diagnostic subgroups formed by the
initial application of the study are the same as they
are in the population as a whole—the repeat study
results will be as shown in Figure 3.4.  For the 82
iron-replete patients initially classified as negative,
62 will have negative results with the repeat study
but 20 will have positive results.  For the 29 iron-
deficient patients with positive results from the first
test, 15 will have a positive repeat study result and
14 a negative result.  And so on for the other
categories.

One way to categorize these patients clinically is
to decide that the test series is positive if either the
initial or repeat study result is positive. This positiv-
ity rule is designated "believe-the-positive."  The
diagnostic performance resulting from this rule is
indicated at the top of Figure 3.5. Forty-three

iron-deficient patients will have at least one positive
test result, so the sensitivity of the series is 0.78 (43
divided by 55).  Of the patients who are iron replete,
62 will have both results negative and will therefore
be appropriately categorized.  The specificity is
therefore 0.56 (62 divided by 110).  Another way to
categorize the patients is to consider the test series
positive only if both study results are positive.  This
positivity rule is referred to as "believe-the-nega-
tive."  Its performance, as demonstrated at the
bottom of Figure 3.5 is a sensitivity of 0.27 (15
divided by 55) and a specificity of 0.94 (103 divided
by 110).

As shown in the example, the "believe-the-
positive" positivity rule leads to an increased sensi-
tivity and a decreased specificity compared to a
single application of the study.  This is because
individuals who have the disorder have two opportu-
nities to be detected while those who do not have the
disorder have two chances to be misclassified.  In
contrast, use of the "believe-the-negative" positivity
rule results in decreased sensitivity but increased
specificity.  With this rule patients who have the
disorder have two opportunities to be misclassified
while those who do not have the disorder have two
chances to be correctly identified.  With additional
repetitions of the study, the diagnostic performance
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Figure 3.4  Diagnostic performance of repeat testing using
transferrin saturation, assuming a repeat classification
correlation of zero.
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Figure 3.5  Application of different positivity rules to repeat
testing using transferrin saturation, assuming a repeat
classification correlation of zero.



of the series is removed further still from that of the
single study.

All of the foregoing calculations have been
based upon the condition that there is no classifica-
tion correlation between repeat studies.  In reality,
classification correlation usually exists (Politser
1982).  Because intraindividual variability in study
results is usually fairly small, a repeat study in an
individual is likely to yield a result close to a previ-
ous result and, therefore, to give a similar diagnostic
classification, even if it is a misclassification.  When
classification correlation is present, the actual
diagnostic performance of a test series will differ
from that computed under the assumption that the
classification correlation is zero. For the "believe-
the-positive" rule, the sensitivity will be greater than
predicated and the specificity will be less; for the
"believe-the-negative" rule, the sensitivity will be
greater than predicted and the specificity will be
less.

Combination testing.  Two popular positivity
rules for combination testing are analogous to those
used for repeat testing.  The "any-test-positive" rule,
for which the test combination is considered positive
if any of the constituent study results are positive, is
the same as the "believe-the-positive" rule.  The
"all-tests-positive" positivity rule is equivalent to the
"believe-the-negative" rule for repeat testing.  And,
just as for repeat testing, the first rule leads to an
increased sensitivity and decreased specificity
compared to the individual studies and the second
rule results in decreased sensitivity but increased
specificity (Cebul et al. 1982).  This is shown in
Figure 3.6 for the combination of ferritin and trans-
ferrin saturation as comarkers of iron deficiency.
Using the data of Dallman et al. (1981), at a critical
value of 10%, transferrin saturation has a sensitivity
of 0.53 and a specificity of 0.75 and, at a critical
value of 10 µg/L, plasma ferritin concentration has a
sensitivity of 0.28 and a specificity of 0.87.  If there
is no classification correlation between the studies,
using the any-test-positive rule gives the test combi-
nation a sensitivity of 0.65 and a specificity of 0.65;
using the all-tests-positive rule yields a sensitivity of
0.15 and a specificity of 0.97.  The any-test-positive
rule is frequently used in multiphasic health screen-
ing.  A multiphasic health screen is a combination of
12, 18, 24 and sometimes more laboratory studies
performed upon a single blood specimen for the
purpose of detecting clinically silent disease in
asymptomatic individuals.  The presence of any

study result outside of its reference interval is
supposed to identify persons who should be evalu-
ated further for subclinical disease.  The diagnostic
specificity of such testing is low, however.  Very
low!  For one laboratory study with a reference
interval based upon a specificity of 0.95, the
probability that a healthy person will have a test
result outside of the reference interval is 0.05.  For a
combination of j uncorrelated laboratory studies,
each of which has a reference interval chosen to give
a specificity of 0.95, the chance of one or more
positive results in a healthy individual is

1 - (0.95) j

This means that for multiphasic screens of 12, 18,
and 24 tests the probability of at least one positive
result is 0.46, 0.60, and 0.71, respectively, for an
individual who is, in fact, absolutely healthy.  In
clinical practice most physicians deal with this
problem by ignoring positive results that represent
only small deviations outside of the reference range.
They do respond to larger deviations.  This is appro-
priate because larger deviations are associated with
greater specificities among the individual tests and,
therefore, with a reasonable level of overall specific-
ity for the multiphasic screen.
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Figure 3.6  Application of different positivity rules to combi-
nation testing using transferrin saturation (critical value,
10%) and ferritin concentration (critical value, 10 µg/L).  A
classification correlation of zero is assumed.



Multivariate positivity rules.  The positivity
rules for combination testing just discussed rely upon
critical values derived from the univariate (one test)
result frequency distributions for the reference
populations.  In the setting of combination testing it
is also possible, and often desirable, to define
positivity rules which arise from a consideration of
the multivariate (multiple test) result frequency
distributions that arise from the application of the
test combination to the respective reference popula-
tions.  These are called multivariate positivity rules.

Discriminant functions.  Positivity rules based
on discriminant functions separate diagnostically
positive test result combinations from diagnostically
negative combinations by defining a curve (two
tests) or surface (multiple tests) that divides the
space of test result combinations into the two
diagnostic regions (Figure 3.7).  When a linear
discriminant function is used, the diagnostic regions
are separated by a straight line or a plane.  The slope
of the line, or the orientation of the plane, is selected
by statistical rules to yield maximum separation of
the result frequency distributions of the diagnostic
classes and, therefore, maximum diagnostic
discrimination (Solberg 1978, Strike 1996).  The
location of the line or plane, which is specified by
the value of an axis intercept, establishes the separa-
tion of the diagnostic categories and thereby serves
as the critical value determining the performance
characteristics of the study combination.  For combi-
nations of two tests, the diagnostic classification of
individuals can be accomplished graphically, by
plotting their test results, or algebraically, by calcu-
lating a discriminant score,

   discriminant score = b1 result 1 + b2 result 2

and comparing the score to the stipulated critical
score value.  For more than two test results, the
algebraic approach is used.

Although linear discriminant function positivity
rules are common in the medical literature, the valid
application of this technique is limited by its statisti-
cal constraints.  In particular, it is necessary that, in
the clinical population of interest, the variances of
the individual test results as well as the covariances
of all test pairs must be the same for individuals with
the disease and those who are disease-free.  This is a
criterion that is rarely satisfied.  Fortunately,
quadratic discriminant analysis can be used when the
individual test variances and the test pair covariances
are unequal; however, the test result distributions
must be multivariate normal.  As shown in  Figure
3.7, quadratic discriminant functions yield maximum
separation of the result frequency distributions of the
diagnostic classes using a curved line or a curved
surface.

Diagnostic ratios.  Diagnostic ratios are a
multivariate approach to result interpretation when
only two laboratory studies are concerned.  Positiv-
ity rules based on diagnostic ratios separate the
diagnostic space into two regions using a straight
line that passes through the origin (Figure 3.8).
Patients are classified by plotting their test results or
by calculating the value of the diagnostic ratio,

diagnostic ratio = result 1
result 2

and comparing it to the critical value for the ratio.
Ratios have proved most useful when the values

of the analytes change in opposite directions in
response to disease.  The ratio of the two magnifies
the changes and thereby increases the diagnostic
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Figure 3.7  Discriminant function positivity rules for the interpretation of a two-test combination.  Left graph, diagnostic
spaces defined by a linear discriminant  function; right graph, diagnostic spaces defined by a quadratic discriminant function.
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resolution.  Transferrin saturation, which is the ratio
of plasma iron concentration to plasma total iron-
binding capacity, is a more reliable marker of iron
deficiency than either measure taken separately
because as the plasma iron concentration declines
with iron deficiency, the total iron-binding capacity
increases.  Consequently, the ratio of the two dimin-
ishes markedly.

Ordinarily, diagnostic ratios are not the best way
to achieve maximum diagnostic discrimination
because the line separating the diagnostic classes
must necessarily pass through the origin.  In
contrast, the line of separation defined by a linear
discriminant function is free to have a nonzero inter-
cept and, therefore, has the positional flexibility to
optimally separate the diagnostic classes.  Thus,
linear discriminant functions make for better positiv-
ity rules than diagnostic ratios.

If the result frequency distributions of the
diagnostic classes are bivariate lognormal, the
discriminant function, which is linear in the
log-transformed diagnostic space, can be written as a
ratio in the untransformed diagnostic space

discriminant ratio = result 1b1

result 2−b2

Because of their superior diagnostic accuracy,
discriminant ratios are preferable to diagnostic ratios
as the bases for positivity rules.

Diagnostic plots.  Positivity rules for two-study
test combinations can be very effectively presented
graphically in what are called diagnostic plots.  In
such plots, the result combinations that are consid-
ered negative are indicated by one enclosed region
and the result combinations that are positive are

indicated by another.  The diagnostic regions are
generally nonoverlapping.

In addition to simplifying the application of
individual positivity rules, diagnostic plots can incor-
porate multiple positivity rules, a feature that is
extremely useful when the same pair of laboratory
studies is used to diagnose a multiplicity of clinical
conditions.  Perhaps the premier example of this
functionality are diagnostic plots of acid-base status
based on blood pCO2 and hydrogen ion concen-
tration.

THE PROBABILITY OF DISEASE IN AN
INDIVIDUAL PATIENT

There is usually some degree of uncertainty in
the diagnostic classification of a patient.  It arises
from an inability to separate completely the presence
of a condition from its absence on the basis of clini-
cal or laboratory findings.  This means that the
presence of a disorder can be expressed only as a
probability: “It is quite likely that you are affected,”
“There is a fifty-fifty chance you have this
disorder,” “You could be suffering from,” and so
forth.  When expressed quantitatively, the probabil-
ity of a diagnosis being correct has a value between
zero, which means that the condition is definitely not
present, and one, which means that the condition is
unarguably present.

Bayes' formula
Formal approaches exist for estimating the

probability of a diagnosis.  One of these, the Bayes-
ian approach, is a well studied general method for
making decisions in the face of uncertainty.  Even in
its formal realization, it is clinically practicable and
it is one of the most common methods used in
computer-based medical decision support.  The
Bayesian approach has informal counterparts in the
diagnostic decision making of many clinicians,
although not all clinicians agree that it is a good
model of, or for, the diagnostic process (for
example, Feinstein 1979).

Prior probability.  The prior probability of a
disorder in a patient, P[pre], is the estimate of the
probability of the disorder arrived at prior to the
performance of a stipulated diagnostic study. Thus,
it is the pre-test probability.  At the time of initial
presentation of a patient, the prior probability is
equivalent to the disease prevalence in the clinical
population to which the patient belongs.  That
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population is defined by the symptoms elicited by
history taking, the signs revealed by physical exami-
nation, and additional pertinent historic and
demographic data such as age, gender, disease
history, disease exposure, and, in the evaluation of
heritable disorders, family history and geoethnic
lineage.  Once diagnostic tests have been performed,
the prior probability is equal to the prevalence of the
disorder in the clinical subpopulation that is charac-
terized by the results of those studies.

Dallman et al. (1981) found that the prevalence
of iron deficiency in the apparently healthy 1-year-
olds they studied was approximately 0.09.  Thus, at
presentation, the prior probability of iron deficiency
in this population was 0.09.  Infants who were
subsequently found to have a low blood hemoglobin
concentration had a number of additional diagnostic
studies performed.  The prevalence of iron defi-
ciency in this (low hemoglobin) subpopulation was
found to be 0.35 so, in terms of further testing, these
infants had a prior probability of 0.35.  

Posterior probability.  Diagnostic laboratory
studies are ordered with the intent of adjusting the
estimate of the probability of a disorder in a patient
based upon the study results. The revised estimate of
the disorder's probability is called the posterior
probability, P[post].  It is the post-test probability.
The method of adjusting probability estimates to be
discussed here is based upon Bayes' formula for
inverting a conditional probability.  The method
possesses a great intuitive appeal, and in addition,
the formulation is provable from the axioms of
probability theory.

Consider the case of a 1-year-old who has a low
blood hemoglobin concentration and who, on subse-
quent testing, is found to have a transferrin satura-
tion of 7.5%.  According to the findings of Dallman
et al. (1981), this child's prior probability of iron
deficiency is 0.35.  What is her posterior probability
of iron deficiency given the measured transferrin
concentration?  The critical value for transferrin
saturation is 10% so the test is positive for iron
deficiency.  There are two ways in which this patient
could have a positive result: she could have a true
positive test result or she could have a false positive
result.  The probability of a true positive study
result, P[true positive], equals the product of her
prior probability of iron deficiency times the
probability of registering a positive test result in a
patient with iron deficiency.  The latter probability
equals the sensitivity of the study.  So,

P[true positive] = P[pre] sens

In this case, the prior probability is 0.35 and the
sensitivity is 0.53 (from Table 3.3), so the probabil-
ity of a true positive result is 0.19.  The probability
of a false positive result, P[false positive], equals the
product of the pretest probability that the patient
does not have iron deficiency (1 minus the prior
probability) times the probability of having a
positive result given that she is not iron deficient (1
minus the specificity).  Therefore,

P[false positive] = (1-P[pre]) (1-spec)

The prior probability is 0.35 and the specificity is
0.25 (Table 3.3), so the probability of a false
positive result is 0.16.

The patient's posterior probability of iron
deficiency, meaning the probability that she had a
positive result because she is truly iron deficient, is
equal to the probability of a true positive result
divided by the total probability of having a positive
result,

P[post] =
P[true positive result]

P[true positive] +P[false positive]

=
P[pre] sens

P[pre] sens + (1 −P[pre]) (1 − spec)

This is Bayes' formula.  Using it, the posterior
probability of iron deficiency in this patient is 0.54.

This form of Bayes' formula should only be
used when dichotomous interpretation of study
results is obligatory because of the qualitative nature
of the study.  When results are quantitative, as for
most laboratory studies, categorizing the result into a
binary classification results in loss of diagnostic
information and unnecessarily restricts the values
that the posterior probability can take.

The use of likelihood ratios based upon the
frequency distributions of results in the pertinent
reference populations allows incorporation of all the
available diagnostic information in the calculation of
the posterior probability of a diagnosis and broadens
the range of values the probability can assume
(Radack 1986). The likelihood ratio is the ratio of
the frequency of a study result in one diagnostic
group to the frequency of the result in another.  In
the example being considered here, it is the ratio of
the frequency of a transferrin saturation of 7.5% in
patients with iron deficiency to the frequency of that
result in patients who are iron replete.  Examination
of Figure 3.1, the reference frequency histograms
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for testing with transferrin saturation, shows that in
patients with transferrin saturations between 6 and
10% the likelihood ratio of iron deficiency is 1.57.
Using the likelihood ratio form of Bayes' formula
(Albert 1982),

P[post] =
P[pre] likelihood ratio

P[pre] likelihood ratio + (1 −P[pre])

or the nomogram shown in Figure 3.9 (taken from
Fagan 1975), the posterior probability of iron
deficiency in the patient is 0.46.  This estimate is
lower than the one obtained from dichotomous inter-
pretation of the study result.  It is also more
accurate.  It quantitatively reflects the fact that a
transferrin saturation in the range 6 to 10% occurs
with only a slightly greater frequency in patients
with iron deficiency than in patients who are not iron
deficient, 33 percent versus 21 percent, respectively.
This very relevant diagnostic information is lost
when the study results are interpreted simplistically,
in a dichotomous fashion, resulting in too high an
estimate of the posterior probability of disease.

When likelihood ratios are derived from continu-
ous distribution models of the frequency data the
ratios take on a continuous range of values.  This is
illustrated in Figure 3.10 (line) which shows the
likelihood ratio for iron deficiency as a function of

transferrin saturation.  The ratios have been calcu-
lated using lognormal distribution models of the
frequency data of Dallman et al. (1981).  Also
shown on the figure (squares) are the empirical
likelihood ratios derived from the reference
frequency histograms.  The likelihood ratio for a
transferrin saturation of 7.5%, as determined using
the model-based curve, is 1.88 which yields a poste-
rior probability of iron deficiency of 0.50 for the
example patient.  This estimate is more accurate than
that based on the empirical likelihood ratio because
the empirical estimates are derived from binned data
(all results between 6 and 10%).

Remember that likelihood ratios will usually
vary widely among different reference populations.
Careless application of a likelihood ratio that is not
appropriate to the actual clinical situation can be
expected to result in erroneous posterior probability
calculations and subsequent diagnostic inaccuracy.

Multiple study results.  Clinicians rarely limit
diagnostic testing to a single study.  Instead, multi-
ple studies are usually used.  The clinical challenge,
therefore, is the interpretation of a series or combi-
nation of study results.

Serial study interpretation will be discussed first
because diagnostic evaluation most often proceeds in
a sequential fashion.  First, certain facts are uncov-
ered by the history and physical; next, the results of
the preliminary laboratory studies are obtained; and
then, over a period of hours to weeks, the results of
additional laboratory studies ordered by the clinician
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Figure 3.9  Nomogram for Bayes' formula.  P(D), prior
probability; P(T/D)/P(D/T), likelihood ratio; P(D/T), posterior
probability.  Reprinted from Fagan TJ.  1975.  Nomogram
for Bayes' theorem.  N Engl J Med 293:257.

Figure 3.10  The likelihood ratio of iron deficiency as a
function of transferrin saturation.  The squares represent the
points constructed from the observed frequency data
(Figure 3.1).  The continuous line is the curve constructed
from the lognormal frequency distribution models of the
data.



become available.  As each new study result is
received, the clinician is able to reassess the
probability of the competing diagnoses using Bayes'
formula.  The posterior probability calculated from
the preceding study result serves as the prior
probability for the computation of the probability of
a diagnosis based upon the current study results.

This approach is correct as long as there is no
result correlation among the studies, that is, as long
as the segregation of patients into subgroups accord-
ing to study results does not affect the result
frequency distributions and, hence, likelihood ratios,
for any of the studies.  When there is appreciable
result correlation—and there usually is—this
approach will generate probability estimates that are
exaggerated; low probability estimates will be too
low and high probability estimates will be too high.
Indeed, as the number of study results becomes
large, the probability estimate will approach either
one or zero even though the true probability has an
intermediate value (Russek et al. 1983).

In the presence of result correlation, conditional
likelihood ratios must be used in Bayes' formula.  A
conditional likelihood ratio is the likelihood ratio for
a study result calculated from reference populations
who have identical results for the preceding studies.
This ratio may be greater than, less than, or equal to
the ratio that would be calculated from reference
populations assembled without this restriction.

When multiple study results are analyzed in
combination rather than serially, the following form
of Bayes formula can be used, but only if there is no
result correlation among the studies,

   P[post] =
P[pre] likelihood ratioi

P[pre] likelihood ratioi + (1 −P[pre])

This formula indicates that for a combination of i
study results, the overall likelihood ratio used in
calculating the posterior probability is the product of
the likelihood ratios of each of the individual studies.
When result correlation is present, the joint likeli-
hood ratio should be used to calculate the posterior
probability,  

  P[post] =
P[pre] joint likelihood ratio

P[pre] joint likelihood ratio + (1 −P[pre])

The joint likelihood ratio is the ratio of the
frequency of the combination of study results in the
presence of the disorder to that in the absence of the
disorder.  Although the calculation of joint likeli-
hood ratios is simple in the case of two diagnostic
studies, as the number of studies increases the

computational burden becomes significant.  More
importantly, tabulation of the ratios for their ready
use clinically becomes nearly impossible, although
the growing availability of computer databases may
someday make it achievable (Krieg 1988).  If the
result frequency distributions behave according to a
parametric statistical model, an enormous simplifica-
tion can be realized because only the model parame-
ter values need to be recorded.  Specific result
combination frequencies and joint likelihood ratios
can then be calculated as needed.

Discriminant and logistic functions.  If the
result frequency distributions for a test combination
satisfy the statistical conditions required for linear
discriminant regression and are multivariate normal,
the likelihood ratios for result combinations can be
calculated directly using the discriminant function
(Strike 1996),

likelihood ratio = e (ZD+ZDF)/2 − Z

where Z is the discriminant score for the result
combination,

discriminant score = Σ bi result i

with i indicating the i th study, ZD is the mean
discriminant score among individuals with the
disease, and ZDF is the mean discriminant score
among individuals who are disease-free.  Dividing
through by (1-P[pre]) and re-expressing the fraction
P[pre]/(1-P[pre]) as an exponential allows Bayes'
formula to be written,

P[post] = e
log

P[pre]
1−P[pre] + (ZD+ZDF)/2− bi result i

e
log

P[pre]
1−P[pre] + (ZD+ZDF)/2− bi result i

+ 1
In this form, which is that of a logistic function, the
parameter values can be estimated using logistic
regression techniques (Strike 1996).  Logistic regres-
sion has two advantages over linear discriminant
regression.  First, the method is much more robust
regarding deviations from statistical constraints; in
particular, it can be used, cautiously, when the
combination result frequency distributions are not
multivariate normal and when the variance/covari-
ance structure of the distributions in the two diagnos-
tic classes are not identical.  Second, logistic
regression allows for the inclusion of qualitative and
semiquantitative study results as test combination
terms (Liao 1994).  This capability is not often
needed in the realm of diagnostic discrimination but
it is indispensable in prognostic discrimination.
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 Imprecision.  Variability in the quality of epide-
miologic investigations of disease prevalence and in
the performance and interpretation of clinical studies
produces estimates of prior probability that are
imprecise.  Imprecision in estimates of the likelihood
ratio arise from limitations in the quality of perform-
ance evaluations of laboratory studies and from the
presence of inter-laboratory variability in the techni-
cal performance of the studies.  Consequently,
posterior probabilities arrived at using Bayes'
formula are also imprecise (Diamond and Forrester
1983, Machin et al. 1983).

As a simple example, consider a case in which
the estimate for the prior probability is 0.5 and that
for the likelihood ratio of 3.  Application of Bayes'
formula using these estimates yields a posterior
probability estimate of 0.75.  Now suppose that the
estimate of prior probability is not exact but instead
consists of a 25 percent chance of a probability of
0.4, a 50 percent chance of a probability of 0.5, and
a 25 percent chance of a probability of 0.6.  Further
suppose that the likelihood ratio estimate actually
consists of a 25 percent chance of a ratio of 2, a 50
percent chance of a ratio of 3, and a 25 percent
chance of a ratio of 4.  If the true prior probability is
0.4 and the true likelihood ratio is 3, then the poste-
rior probability is 0.67.  Since the chances of the
true prior probability being 4 and the true likelihood
ratio being 2 are 0.25 and 0.5, respectively, the
chance that both are the true values is 0.125 (the
product of the separate chances).  The complete
distribution of values for the posterior probability
(shown in Table 3.4) is obtained by repeating the
foregoing calculations for all of the possible combi-
nations of prior probability and likelihood ratio and
aggregating the chances that correspond to identical
values of the posterior probability (Iversen 1984).
The range of values for the posterior probability is

0.57 to 0.86 with a central 87.5 percent confidence
interval of 0.67 to 0.82.  Notice that there is only a
0.3125 chance that the posterior probability is 0.75,
the value calculated using the mean values for the
estimates of the prior probability and likelihood
ratio; the chances are 0.375 that the actual posterior
probability is lower than 0.75 and 0.3125 that it is
higher.

A somewhat more realistic example of the
use of Bayes' formula when there is imprecision in
the estimates of the prior probability and the likeli-
hood ratio is illustrated in Figure 3.11.  In this
example the estimates of the prior probability and
the likelihood ratio vary in a continuous fashion
according to normal distributions.  The mean value
and standard deviation are set at 0.5 and 0.1, respec-
tively, for the prior probability and at 5 and 1,
respectively, for the likelihood ratio.  The distribu-
tion of posterior probabilities that results from these
inputs is left-skewed with a mode of 0.84.  The
central 90% confidence interval for the distribution
is 0.69 to 0.91.

In practice, the imprecision inherent in the
estimation of disease probabilities is rarely explicitly
calculated in the foregoing quantitative fashion.
Nevertheless, the clinician must always be mindful
of such uncertainty, especially when prior probabili-
ties and study performance measures are derived
from research investigations with relatively small
numbers of patients.

Study results that confirm or exclude a diagnosis
A confirming study result is one that raises the

probability of a suspected diagnosis past the
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Table 3.4
Distribution of posterior probabilities for an example
with imprecise prior probability and likelihood ratio
estimates

P[post] Distribution

  0.57 0.0625
  0.67 0.2500
  0.73 0.0625
  0.75 0.3125
  0.80 0.1250
  0.82 0.1250
  0.86 0.0625
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Figure 3.11  Distributions of prior and posterior probability
for an example with normal distributions of the estimates of
the prior probability and the likelihood ratio.



threshold probability for acceptance of the diagnosis,
P(acceptance); the threshold probability for accep-
tance being that level of probability at which the
physician and patient agree that the diagnosis is
established with adequate certainty, given the pros
and cons of making the diagnosis and in the knowl-
edge that the diagnosis can subsequently be changed
if the future course of the disease or the response to
therapy are not typical of the diagnosed illness.
Determining a threshold probability explicitly is no
easy task and the most widely applied formal method
for its calculation, clinical decision analysis (Pauker
and Kassirer 1987, Kassirer et al. 1987), is still
controversial.  Still, the notion of a threshold
probability is present, albeit in an informal form, in
most diagnostic reasoning. Believing that an approxi-
mate value of the threshold probability can be identi-
fied, study values that confirm a diagnosis are those
that yield a posterior likelihood of disease at least
equal to the threshold probability.  What that means
in terms of result likelihood ratios can be appreciated
by expressing Bayes' formula in the following form,

 P[acceptance] =
P[pre] threshold likelihood ratio

P[pre] threshold likelihood ratio + (1 +P[pre])

Rearrangement of this equation yields,

 threshold likelihood ratio for acceptance =
(1 −P[pre]) P[acceptance]
P[pre] (1 −P[acceptance])

Study results with likelihood ratios greater than the
threshold likelihood ratio confirm the diagnosis.

Similar reasoning yields an analogous formula
for the threshold likelihood ratio for rejection of a
diagnosis in which the threshold probability for
rejection of a diagnosis, P[rejection], is that level of
probability at which it is agreed that the diagnosis is
so unlikely that it can be excluded,

 threshold likelihood ratio for rejection =

    
(1 −P[pre]) P[rejection]
P[pre] (1 −P[rejection])

Study results with likelihood ratios less than the
threshold ratio exclude the diagnosis.

Usually the threshold probability for acceptance
of a diagnosis is different than the threshold proba-
bility for rejecting the diagnosis.  That means that
there exist intermediate probabilities that do not
justify acceptance or rejection of the diagnosis.
Patients with these intermediate probabilities require

additional diagnostic workup.  Sometimes, however,
the threshold probability for acceptance of a diagno-
sis is equal to the threshold probability for rejecting
the diagnosis; for instance, in situations in which
patients in whom the diagnosis is rejected are to be
seen at some subsequent time, offering another
opportunity to evaluate them for the disorder.

The application of the formulas is illustrated by
again using data of Dallman et al. (1981).  The prior
probability of iron deficiency in the screen-positive
clinical population is 0.35. The threshold probability
for accepting a diagnosis of iron deficiency and insti-
tuting oral iron therapy might, for example, be
around 0.7, a value twice that of the prior probabil-
ity.  Substituting these values into the formula for
the threshold likelihood ratio for acceptance of a
diagnosis yields a ratio of 4.33.  Figure 3.12 shows
that a transferrin saturation of 5.5% is associated
with this ratio.  Thus, a transferrin saturation of
5.5% or less would be confirmatory of the diagnosis
of iron deficiency.  If the threshold probability for
rejecting a diagnosis of iron deficiency were, for
example, 0.1, the threshold likelihood ratio would be
0.21.  No value of the transferrin saturation has a
likelihood ratio that low so the measurement of
transferrin saturation alone could not be used as a
tool for the exclusion of a diagnosis of iron
deficiency.

Screening for a disorder
A screening study is one used to detect a

serious, treatable disorder in persons afflicted with
the disorder but who have no clinical findings
suggestive of the condition.  Such clinically silent
conditions are sometimes labeled "occult."  It seems
reasonable to define the threshold likelihood ratio for
followup of a screening test result as the ratio that
yields a posterior probability of the disorder equal to
the threshold probability for rejecting the diagnosis.
For study values associated with likelihood ratios
greater than the threshold, the disorder cannot be
considered excluded so further evaluation is clearly
justified. The applicable formula is,

 threshold likelihood ratio for followup =

       
(1 − prevalence) P[rejection]
prevalence (1 −P[rejection])

Notice that, in this usage, the prior probability is the
prevalence of the disorder in the screened
population. Also notice that the formula reveals
that the larger the threshold probability for rejection
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of a diagnosis, the greater the threshold likelihood
ratio must be.  This is somewhat unexpected because
it means that the less critical the clinician is about
excluding a certain disorder, the better the perform-
ance required of a screening test.  Such a conclusion
is at odds with the intuitive notion that less serious
illnesses can be screened for casually, with studies
of mediocre quality.  But, in fact, evidence from a
study of high quality is needed to convince a clini-
cian to abandon an impression of health, which is
after all the alternate hypothesis in an asymptomatic
patient, in favor of the pursuit of a disorder of little
clinical moment, especially when additional diagnos-
tic evaluation involves stress, expense, and risks to
the patient.

It is possible that some results of a screening
study possess large enough likelihood ratios that a
diagnosis can be made on the basis of these results
alone.  For this to be so, the study results must have
likelihood ratios that exceed the threshold ratio for
acceptance of the diagnosis,

 threshold likelihood for acceptance =

    
(1 − prevalence) P[acceptance]
prevalence (1 −P[acceptance])

Differences between populations as regards the
frequency of risk or protective factors can signifi-
cantly alter the prevalence of the disorder within the
populations and, thereby, affect the value of the
threshold likelihood ratio.  Hence, the composition
of the population subjected to screening is an essen-
tial consideration when calculating threshold likeli-
hoods in screening for a disorder.

SELECTING DIAGNOSTIC STUDIES

A physician conducting a diagnostic evaluation
usually has available a number of studies and study
combinations from which to choose to address
specific diagnostic questions.  Which study or study
combination is the best to order?  The first step in
answering the question is to decide if "best" means
that, over a broad range of possible performance
criteria, one study is superior to the alternative
studies or if "best" means that the study is the most
successful classifier within a specified criterion
range.

When one wants to compare study performance
over a wide range, the index of classification
accuracy that is used is the area under the ROC
curve.  This index is appealing because it is

equivalent, in the case of a diagnostic study, to the
probability that, given two individuals, one with a
disorder and one without, the study result will be
more suggestive of the condition in the individual
who has the disorder.  Obviously, the larger this
probability, the better a classifier the study is.  To
compare the classification accuracy of laboratory
studies, then, one calculates the area under the
respective ROC curves and tests the differences
between the area estimates for statistical
significance.  If significant differences are found, the
study with the largest area is the best classifier.

A method for calculating and comparing the
areas under ROC curves is available for data fitting
normal distributions (Wieand et al. 1989).  ROC
curves arising from lognormally distributed data can
also be analyzed by this method by log transforma-
tion of the data into its normally distributed form.
Guyatt et al. (1992) describe the application of this
method to the ROC curves for various markers of
iron deficiency in adults with anemia.  The empirical
curves for plasma ferritin concentration and transfer-
rin saturation from that paper and the curves arising
from lognormal frequency distribution models of the
data are shown in Figure 3.12.  The area under the
ferritin ROC curve is 0.95 (95% confidence interval,
0.94 to 0.96).  The area under the transferrin satura-
tion ROC curve is 0.74 (95% confidence interval,
0.70 to 0.78).  The area under the ferritin curve is
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significantly larger than that under the transferrin
saturation curve, so, overall, ferritin is a
better—indeed, much better—study for the diagnosis
of iron deficiency.  Nonparametric statistical
methods (i.e., methods that do not employ paramet-
ric data modeling) are also available for analyzing
ROC curves (McNeil and Hanley 1984, DeLong et
al. 1988).

Not infrequently, the comparison of the
performance of different laboratory studies is
relevant only within a certain range of performance
criteria, such as when a study is sought to confirm
the presence of disorder in an individual for whom
the diagnosis is likely, or to exclude an important
but unlikely alternative diagnosis, or to screen for a
disorder among asymptomatic individuals.  Which
studies perform these specific clinical tasks best is
revealed by a consideration of the performance
characteristics necessitated by each.

In the case of a study to be used to confirm a
diagnosis, it was shown that study results associated
with likelihood ratios larger than the threshold ratio
for acceptance of the diagnosis are considered
confirmatory.  Many studies may have results that
satisfy this performance criterion.  Which is the
preferred study?  It seems reasonable to propose that
the study with the greatest sensitivity should be
preferred. This assures that the maximum number of
patients afflicted by the disorder will have the
diagnosis confirmed when the study is performed.
When selecting among excluding studies, the study
with the largest specificity at the study result giving
the threshold likelihood ratio for rejection should be
preferred.  Then the greatest number of patients free
of the condition will have the diagnosis excluded.
Because the object of screening studies is to detect a
disorder, they must be sensitive.  So, the preferred
screening study should be the one with the highest
sensitivity at the study value yielding the threshold
likelihood ratio for followup.

The application of these selection rules for
confirming and excluding studies are illustrated by
considering the choice between plasma ferritin
concentration and transferrin saturation in the
diagnostic evaluation of an adult patient who is
anemic.  If the clinician's mindset is to prove that
iron deficiency is not the cause of the anemia, he or
she will want to order the study that is the preferred
excluding study.  If a diagnosis of iron deficiency is
sought, so that iron therapy can be initiated
promptly, the study that better serves as a

confirming study should be ordered.  If the prior
probability of iron deficiency is assumed to be 0.35
and the threshold probability for accepting a diagno-
sis of iron deficiency is 0.7, the threshold likelihood
ratio for acceptance is 4.33.  Figure 3.13 shows the
likelihood ratio of iron deficiency as a function of
the study value for ferritin concentration and trans-
ferrin saturation based on the lognormal modeling of
the data reported by Guyatt et al. (1992).  Both
studies have results that yield a likelihood ratio of
4.33, for ferritin it is a concentration of 25 µg/L and
for transferrin saturation it is a value of 5.6%.  At
these values, transferrin saturation has a sensitivity
of 0.26 and ferritin has a sensitivity of 0.75 so
ferritin is by far the superior test for confirming the
diagnosis.  Using 0.1 as the threshold probability for
rejecting a diagnosis of iron deficiency, the threshold
likelihood ratio for rejection is 0.21.  There is no
value at which transferrin saturation has a likelihood
ratio this low, so it cannot be used to exclude the
diagnosis.  Ferritin has the requisite likelihood ratio
at a concentration of 107 µg/L.  At that concentra-
tion, the specificity of the study is 0.70 making
ferritin a very good study for excluding the
diagnosis. 

PROGNOSTIC STUDY PERFORMANCE

Prognostic laboratory studies are used in two
ways: to aid in predicting the outcome of an illness
and to help predict if an individual will develop or
relapse from a disorder at some specific time in the
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future.  As both of these uses for prognostication
represent exercises in clinical classification, it is
possible to describe the performance of prognostic
studies to a large extent using the same techniques
that have been developed to characterize diagnostic
classification.

In diagnostic classification, the fundamental
measures of performance are sensitivity and specific-
ity.  Because there may be more than two prognostic
categories and because outcome and risk categories
are not necessarily as antithetical as the diagnostic
categories of disease and free from disease, terms
other than sensitivity and specificity need to be
employed to measure performance in prognostic
classification.  Unfortunately, no distinctive terms
have been invented for this purpose.  Instead, the
utilitarian phrase, fraction correctly classified, will
be used here to quantify the fraction of individuals
belonging to a prognostic group who are correctly
placed into that group by the results of the laboratory
study.

The prognostic group into which an individual is
classified is determined by the study result for the
individual and the study's critical values.  When
there are only two prognostic categories, there will
be a single critical value.  If the study result is
smaller than the critical value, the individual will be
assigned to one of the prognostic groups and if the
result is larger than the critical value he or she will
be assigned to the another.  Because any study result
can potentially function as the critical value, the
comprehensive description of the classification
performance of the study requires a listing of the
fractions correctly classified for every possible

choice of critical value.  This is conveniently done
graphically by means of a performance characteristic
curve, i.e., a ROC curve.

For example, in a study comparing the prognos-
tic performance of acetaminophen half-life and the
14C-aminopyrine breath test as outcome predictors in
acute acetaminophen poisoning, Saunders et al.
(1980) report the acetaminophen half-lives shown in
Figure 3.14.  As pictured here, the good prognosis
group consists of those patients who had either no
liver damage or mild to moderate liver damage as a
consequence of the drug overdose.  The poor
prognosis group is made up of those patients who
either died acutely or who had severe liver damage.
The ROC curve for these data is shown in Figure
3.15.

Multiple prognostic categories
When there are more than two prognostic

categories, more than one critical value is necessary;
the number being one less than the number of
categories.  Hence, two values are required to
separate three categories: one value indicates the
separating line between the good prognosis group
and the intermediate prognosis group and the second
value delimits the intermediate and poor prognosis
groups.  A complete description of the performance
of the study as a prognostic classifier in this case
requires tabulation of the fraction correctly classified
for each of the prognostic categories for every
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Figure 3.14  Individual values of acetaminophen half-life in
acute acetaminophen poisoning with data sorted into two
prognostic categories.



possible choice of critical value pairs.  This
produces a trivariate data set that can be represented
graphically as a three-dimensional ROC surface.

Returning to the example from Saunders et al.
(1980), consider the classification performance of
acetaminophen half-life when three prognostic
groups are defined—a good prognosis group, here
consisting of patients who had no liver damage, an
intermediate prognosis group composed of patients
with mild to moderate liver damage, and a poor
prognosis group made up of patients who had severe
liver damage or who died acutely.  The acetamino-
phen half-life data arranged according to this catego-
rization of outcomes is shown in Figure 3.16 and the
empirical ROC surface is shown in Figure 3.17.

Just as there are measures of diagnostic perform-
ance that incorporate disease prevalence, there are
measures of prognostic performance that reflect the
quantitative effects of prognostic category
prevalence.  The most important of these measures
is prognostic efficiency, the fraction of individuals in
a clinical population who will be correctly classified
by the use of a prognostic study,

efficiency = FCCi $ prevalencei

where FCCi is the fraction correctly classified for
prognostic category i and the summation is carried
out over all the prognostic categories.
 
THE PROGNOSIS IN AN INDIVIDUAL

Prognoses are not like diagnoses.  It is not
necessary to eventually assign a patient to one or
another prognostic group.  Instead, it is enough to

know, and let the patient know, the relative
probabilities of being in each of the relevant
prognostic groups.  For instance, a clinician does not
tell a patient “your cancer will recur” even though
the probability of having a recurrence is greater than
the probability of remaining recurrence-free.
Instead, the patient may be told, “There is a 75
percent chance that you will have a recurrence of
your tumor within 5 years.”  

The probability of an individual patient belong-
ing to a particular prognostic group can be calculated
using Bayes' formula.  The best way to make the
calculation is by using likelihood ratios, in which
case (Birkett 1988),

Pj [post] =
prevalencej

prevalencej +
i!j

prevalencej
likelihood ratioji

where Pj [post] is the posterior probability of being in
the j th prognostic category and likelihood ratioji is
the frequency of the study result in group j divided
by the frequency in group i.  The summation is
carried out over all the prognostic categories except
category j.  If there are only two prognostic catego-
ries, the preceding formula has the more familiar
appearance,

  P[post] =

 
prevalence $ likelihood ratio

prevalence $ likelihood ratio + (1 − prevalence)

Figure 3.18 (left graph) shows the likelihood ratio of
a good outcome in acute acetaminophen poisoning as
a function of the acetaminophen half-life as
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Figure 3.16  Individual values of acetaminophen half-life in
acute acetaminophen poisoning with data sorted among
three prognostic categories. Figure 3.17  Empirical ROC surface for acetaminophen

half-life used to classify three prognostic groups.



computed from lognormal modeling of the data in
Figure 3.14.  The posterior probability of a good
outcome as a function of acetaminophen half-life, as
calculated for a prevalence of 0.6, is also shown
(right graph).  At this prevalence, which was chosen
because it is the prevalence in the study of Saunders
et al. (1980), the study value corresponding to a
probability of 0.5 is 8.3 h. 

Regrettably, it is not infrequent for the prognos-
tic performance of a laboratory study to be reported
in such a way that it is impossible to calculate likeli-
hood ratios for the study.  Instead, one is forced to
calculate posterior probabilities solely from the
reported values of the fractions correctly classified
for a limited set of critical values.  For two prognos-
tic categories, the form of Bayes' formula that must
then be used is,

 P[post]=

    
prevalence $ FCC1

prevalence $ FCC1 + (1 − prevalence)(1 − FCC2)

where FCC1 and FCC2 are the fractions correctly
identified as reported for the critical value closest to
the study result.  Note the similarity of this formula
and that for the calculation of diagnostic probability
using sensitivity and specificity.

Logistic functions
The probability curve shown in Figure 3.20

(right graph) was computed by modeling the
frequency data of each of the prognostic groups and
then using the model parameters to calculate, by
Bayes' formula, the probability of the indicated

outcome.  An alternative computational approach is
to estimate the parameters of a model that directly
describes the sigmoidal relationship between the
value of the study result and the probability of
membership in the prognostic group.  Such models
are called probability models (Liao 1994).  By far
the most commonly used probability model is the
logistic model,

P[post] = eb0+b1 result

eb0+b1 result + 1
where b0 and b1 are the model parameters.

Probability modeling using logistic regression
has a number of very desirable features that explain
its great appeal: it can be used to model posterior
probabilities for test result combinations, in which
case it has the form,

  p[post] = eb0+ bi result i

eb0+ bi result i + 1
it can use qualitative and semiquantitative study
results and categorical variables either alone or in
combination with quantitative study results, it enjoys
considerable robustness to departures from the statis-
tical constraints regarding data normality and
variance/covariance structure, and it can be used
when there are multiple prognostic groups (Strike
1996).  Because logistic modeling allows the inclu-
sion of other pertinent demographic and clinical
data, logistic functions are the most common way to
calculate posterior probabilities from prognostic
study results.  Care must be taken in their use,
however, because logistic functions include the
effect of prognostic group prevalence; it is
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embedded in the constant exponential term, b0.  In
clinical settings with group prevalences different
from those in which the function parameters were
determined, the probability estimates will be inaccu-
rate unless a prevalence adjustment is made (Poses et
al. 1986, Morise et al. 1996).  

SELECTING PROGNOSTIC STUDIES

Prognoses are usually based on the classification
probabilities generated by prognostic models that
take into account a combination of demographic,
clinical, and laboratory data.  Consequently, the
question of what laboratory studies to order when
determining a prognosis comes down to selecting the
prognostic model that has been found to have the
best prognostic performance.  

When there are only two prognostic categories,
the most useful index of classification accuracy in
the comparison of prognostic performance is the area
under the ROC curve.  The methods for calculating
the area and its confidence interval are identical to
those described earlier for comparing diagnostic
study performance.  As an example, based on the
data from Saunders et al. (1980), the ROC curves
for acetaminophen half-life and the 14C-aminopyrine
breath test as outcome predictors in acute acetamino-
phen poisoning are as shown in Figure 3.19.  The

empirical ROC curves and the ROC curves derived
from lognormal frequency distribution models of the
data are illustrated.  The area under the acetamino-
phen half-life ROC curve is 0.85 with a 95% confi-
dence interval of 0.70 to 1.00.  The area under the
ROC curve for the 14C-aminopyrine breath test is
0.99 with a 95% confidence interval of 0.96 to 1.00.
The area under the ROC curve for the
14C-aminopyrine breath test is larger than that for
acetaminophen half-life, suggesting that that study is
the superior prognostic tool; however, the confi-
dence intervals overlap so the 14C-aminopyrine
breath test cannot be said with certainty to be better.

It might be imagined that a multidimensional
extrapolation of the area under the ROC curve would
serve as a useful measure of classification accuracy
when there are multiple prognostic categories.
Regrettably, there is as yet no statistical research
concerning this measure or any other measure for
performance comparison in the setting of multiple
prognostic categories.
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