
EVALUATING MEDICAL UTILITY

A laboratory study has medical utility if it meets
a clinical need as well as or better that the alternative
approaches used to address that need.  To determine
if a particular test has utility as a classification study,
it is necessary to find out how well it performs its
role as a clinical classifier and how that performance
compares with the performance of the other means
used to achieve the classification.  The investigation
of the classification performance of a laboratory
study is referred to as a performance evaluation.

Reference classification
A complete report of a performance evaluation

includes the seven components listed in Table 4.1.
The necessary start to the report is a clear statement
of the diagnostic classes or prognostic classes meant
to be distinguished by use of the study and of the
criteria used to assign study subjects to the classes.
Ideally, the method employed for the ultimate classi-
fication of subjects, the reference method, should be
a perfect classifier, a so-called gold standard.  In
reality, of course, reference methods usually fall
short of perfection.  Often, reference methods for
diagnostic classification are completely specific but
not completely sensitive.  This is true, for example,
for methods based upon pathologic examination.
They are not completely sensitive because a mild
form of a disorder or a small focus of disease can be
missed.  Reference methods for prognostic classifi-
cation can be perfect classifiers, such as when the
prognostic groups are "dead in five years" and "alive

in five years".  However, in many situations the
methods are not completely accurate.  Consider, for
example, when "disease recurrence at five years"
and "no disease recurrence at five years" are the
prognostic groups.  Even the best reference method
can be expected to misclassify some patients in
whom recurrent disease is present but not yet clini-
cally detectable.  Imperfect reference methods that
are completely specific give a correct estimate of the
sensitivity of a diagnostic study but lead to underesti-
mation of its specificity (Statquet et al. 1981).
Similarly, for two-group prognostic studies, an
imperfect reference method that is completely
accurate in classifying members of the non-event
group leads to a correct estimate of the fraction
correctly classified in the event group but yields an
underestimate of the fraction correctly classified in
the non-event group (Table 4.2).

Sometimes the reference methods that are used
are neither completely specific nor sensitive, when
evaluating a diagnostic study, or are inaccurate in
classifying the members of both the event and
non-event groups, when evaluating a prognostic
study.  This is often the case when more definitive
reference methods are unduly invasive, painful,
expensive, or inconvenient.  Also there are disorders
for which no widely accepted gold standard classifi-
cation method exists.  Estimates of the classification
performance measures determined in an evaluation
using such reference methods are subject to error
and thus, if uncorrected, must be considered rough
approximations (Walter and Irwig 1988).  Correction
of the estimates is sometimes possible, however.
For instance, if the performance measures of a refer-
ence method have been determined at some other
time by comparison with a true gold standard, those
values can be used to calculate the corrected
estimates of the performance measures of the method
being evaluated (Statquet et al. 1981).  In addition,
corrected performance measure estimates can be
derived using other more elaborate evaluation
designs such as repeat testing (Yanagawa and Gladen
1984, Schulzer et al. 1991), testing with multiple
studies (Yang and Becker 1997, Torrance-Rynard
and Walter 1997, Qu et al. 1996), and testing in two
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Table 4.1
Components of a Performance Evaluation Report

1. Definition of the diagnostic or prognostic classes
2. Description of the reference method or technique used to

assign subjects to the diagnostic or prognostic classes
3. Definition of the clinical setting
4. Description of the study population
5. Description of the analytic procedures and mathematical

techniques used
6. Description of performance
7. Description of validation study



clinical populations, assuming that the study
performance will be equivalent in both (Hui and
Walter 1980).

Other forms of systematic error, or bias, in
reference classification of the study population have
been recognized.  These include ascertainment bias
and diagnostic-review bias.  Ascertainment bias
results from unequal vigor in application of the
reference classification method among all the study
subjects (Wasson et al. 1982).  For instance, if the
reference technique is invasive, subjects who are less
ill will often be spared the procedure but may still be
assigned to the disease-free group or the favorable
prognosis class.  Similarly, if long-term monitoring
of subjects is necessary for their final classification,
subjects at low risk or with less severe symptoms
may be included in the analysis even though they are
lost to follow-up.

When the results of the method under study are
known to the investigator making the reference class
assignments, and when such knowledge can influ-
ence the classification made, there is a risk that,
consciously or unconsciously, the classification will
be biased in favor of agreement with the study
method results.  This kind of bias, called diagnostic-
review bias (Ransohoff and Feinstein 1978), leads to
overestimation of study performance.  It can be
avoided by "blind" interpretation of the reference

method results.  A similar form of bias,
incorporation bias (Ransohoff and Feinstein 1978),
arises when the reference method includes as one of
its criteria the results of the method whose perform-
ance is being studied.  Such circular reasoning is
especially likely to arise when continuing contro-
versy concerning the precise clinical utility of a
diagnostic or predictive test motivates researchers to
evaluate its performance after it has been incorpo-
rated into clinical practice.

The following are excerpts from the methods
section of an unusually thorough evaluation report
detailing the performance of a number of plasma
enzymes for the diagnosis of acute myocardial
infarction (Werner et al. 1982):

We investigated patients with acute myocar-
dial infarction and patients in whom this
condition was suspected but ruled out.  The
diagnostic classifications were established
after the patient's discharge by a review of all
clinical findings, including history, electrocar-
diographic data, and laboratory data.  The
document on "Nomenclature and Criteria for
Diagnosis of Ischemic Heart Disease" [Report
of the Joint International Society and Federa-
tion of Cardiology/World Health Organization
Task Force on Standardization of Clinical
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Table 4.2
Effects of Common Deficiencies in the Design of Performance Evaluations 

Deficiency                                       Sensitivity or     Specificity or
                                                                       fraction correctly classified               fraction correctly classified

    event group    non-event group

Reference classification

Imperfect reference method
     sensitivity<1 correct under
     fraction correctly classified, event group<1
     specificity, sensitivity<1 incorrect incorrect
     fraction correctly classified, both groups<1
Ascertainment bias incorrect incorrect
Diagnostic-review bias over over
Incorporation bias over over

Study population spectrum

Inappropriate population (not applicable) over
Inadequate heterogeneity over over
Work-up bias over under
Selection bias over under

Analytical methodology

Inaccurate or imprecise method under under
Test-review bias over over



Nomenclature. Nomenclature and criteria for
diagnosis of ischemic heart disease. Circula-
tion 1979; 59:607-609] was used for the
diagnosis of infarction.  Twelve-lead electro-
cardiograms were recorded on admission and
repeated every 24h for four days.  The devel-
opment of Q waves with a duration of 0.04s
was considered diagnostic of an acute trans-
mural infarct; S-T and T wave changes with
evolution were taken to indicate a nontransmu-
ral infarction.

In this investigation, subjects were assigned to
the diagnostic classes according to a widely accepted
set of clinical and laboratory criteria.  Although
these criteria do not qualify as a gold standard, as
there is still no universally acknowledged perfect
diagnostic method for the clinical diagnosis of
myocardial infarction (Lee and Goldman 1986), they
constitute a generally accurate and reproducible
diagnostic tool.  However, the results from the very
laboratory studies under study are included among
the criteria used for reference classification.  There-
fore, some degree of incorporation bias is certain to
affect the performance estimates.  Still, the absence
of a gold standard method of classification necessi-
tates the use of this reference method.  It must be
kept in mind, however, that the findings of the
evaluation are biased toward overestimating the
diagnostic performance of the enzyme markers.

Study population
The third component of a performance evalua-

tion report is a definition of the clinical setting in
which the study is to be used.  This means that the
report must indicate the relevant medical history,
signs and symptoms, and preliminary clinical and
laboratory study results in patients in whom the
study under review is to be used.  The definition,
while specific, should be general enough to include
the range of patient presentations actually seen in
practice.  The clinical setting for use of the labora-
tory studies evaluated by Werner et al. was:

Our study was designed to arrive at a protocol
for the use of enzymes in the diagnosis of
myocardial infarct ... under actual clinical
circumstances ...

The "actual clinical circumstances" referred to
can be deduced from the make-up of the study

population; it consisted entirely of patients admitted
to a Cardiac Care Unit.  The setting, therefore, is
inpatient evaluation of acute myocardial infarction.
The findings of the evaluation may not apply to the
use of the diagnostic studies in different clinical
settings such as work-up of acute chest pain in the
emergency room (Lee and Goldman 1986).  The
extent to which they apply to the diagnosis of
perioperative myocardial infarction depends upon the
representation of such patients among the study
population.  The wording of the reports suggests that
none of the subjects were perioperative.  The clinical
setting is further defined by the authors in terms of
the interval between the occurrence of the infarct
and the time of admission and diagnostic testing of
the patients:

Patients for whom the aggregate data
suggested that infarction occurred within 24
hour before hospitalization were classified as
"early admission," patients in whom infarction
occurred within 24-48 hours before hospitali-
zation as "intermediate admissions," and
patients in whom infarction occurred within
48-72 hours before hospitalization as "late
admissions."  Enzyme values were separated
into four groups:  those obtained from
uninfarcted patients, and those obtained from
infarcted patient on the first, second, and third
day after infarction.

After defining the clinical setting, the subjects
who participated in the evaluation are described.
Obviously, the study subjects should be a sample of
individuals from the stipulated clinical setting.  This
condition is sometimes not met, though.  For
instance, patients with completely unrelated disor-
ders or even healthy persons may be used to deter-
mine the specificity of a diagnostic study for which
the sensitivity has been ascertained in a population
limited to patients known to have the diagnosis, such
as patients attending a specialty clinic.  In such an
evaluation, specificity will be overestimated.  The
subjects should also constitute a representative
sample.  Thus the spectrum of clinical variability
within the study population should be as broad as
possible (Ransohoff and Feinstein 1978).  Patients
with mild and early forms of a disorder or those
falling into more favorable prognostic classes should
be included in the evaluation, as should patients with
unusual clinical features.  The population should not
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consist entirely of patients who are in the advanced
stages of a disorder or who have an extreme progno-
sis.  There should also be considerable heterogeneity
among the individuals in favorable diagnostic and
prognostic groups.  Some of the subjects should
suffer from related disorders and illnesses that can
be confused with the  condition under investigation.
Indeed, there should be many patients in whom the
reference classification cannot be made without use
of the reference technique.  Also, the subjects should
represent a diverse sample in terms of biologic
attributes, such as age and gender.  Failure to assem-
ble a population with an adequate biologic spectrum
usually results in overestimation of study
performance.

Sensitivity will be overestimated if the study
population consists of subjects selected because their
chances of having a particular disorder are great
enough to justify the use of an invasive, painful, or
costly reference method of classification.  This form
of bias is called work-up bias (Ransohoff and
Feinstein 1978).  In the evaluation of a prognostic
study, work-up bias originates from the preferential
selection of subjects with a high likelihood of
belonging to prognostic classes that are serious
enough to warrant the use of an impractical or
expensive reference method.  Work-up bias leads to
overestimation of the fraction correctly classified in
those prognostic classes.  Related to work-up bias is
selection bias (also called verification bias) which
arises when the results of the classification method
under study determine which subjects will undergo
reference classification and thereby be included in
the evaluation.  This form of bias is particularly
likely to appear in evaluations of screening tests
because these investigations often have a study
design in which performance of the reference
method is limited to those individuals who test
positive when screened.  If selection bias exists, the
sensitivity of a diagnostic method will be overesti-
mated and its specificity underestimated; similarly,
for prognostic studies, the fraction correctly classi-
fied will tend be overestimated in classes with poor
prognoses and underestimated in classes with good
prognoses.  There are parametric (Begg and Greenes
1983, Gray et al. 1984) and nonparametric (Zhou
1996) methods for obtaining unbiased estimates of
study performance when selection bias exists .

The schemes that are employed to sample
individuals from a stipulated clinical setting are of
three general types, referred to as naturalistic,

retrospective, and prospective by Kraemer (1992).
Naturalistic sampling is characterized by either
random sampling or strict consecutive sampling of
the population of interest.  Such sampling results in
a study population with a prevalence of disease
comparable to that of the clinical population.  Using
this scheme, the estimate of the efficiency of the
study is unbiased but the estimates of sensitivity and
specificity or fraction correctly classified are biased
in inverse proportion to the number of subjects
studied and the prevalence of the diagnostic or
prognostic class.  With retrospective sampling,
members of the pertinent clinical population are
screened at random or consecutively using the refer-
ence method and then random subsets of individuals
in each diagnostic or prognostic class are tested
using the study under evaluation.  This sampling
approach yields estimates of sensitivity and specific-
ity or fraction correctly classified that are unbiased.
A practical and financial advantage of this approach
compared to that of naturalistic sampling is that the
study under evaluation needs to be performed in
considerably fewer individuals in the diagnostic or
prognostic groups that are common.  For instance,
in the evaluation of a study used to diagnose a disor-
der with a prevalence of 0.2, if all of the screen-
positive individuals are subsequently studied, only
one quarter of the screen-negative individuals need
to be studied to have the same number of data points
for the estimation of specificity as there are for the
estimation of sensitivity.  The last type of sampling
scheme, prospective sampling, is, as its name
implies, the inverse of retrospective sampling.
Here, the clinical population is screened using the
study being evaluated and then subsets of individuals
classified as to their diagnostic or prognostic class
according to the study are further tested using the
reference method.  The unbiased performance
measures obtained using this scheme are the predic-
tive values of a test result.  Sensitivity and specific-
ity or fraction correctly classified must be derived
from the respective predictive values and an indirect
estimate of prevalence by using Bayes' formula
(Choi 1992, Kraemer 1992).  When compared to
naturalistic sampling, this scheme results in the
reference method being performed on fewer
individuals in the diagnostic or prognostic groups
that are common.  This is advantageous when the
reference method is expensive or risky.  The disad-
vantage of prospective sampling is that the perform-
ance of a study can only be evaluated at a few
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critical values thereby making a comprehensive
performance evaluation impossible.

The subjects comprising the population studied
by Werner et al. are described thus:

The sample represents the aggregate of admis-
sions to the Cardiac Care Unit (GWU Med.
Center) during the period for study, and in
this sense reflects the prevalence of myocar-
dial disease in a "complaining" population.
However, from this sample, only individuals
for whom enzyme assays were done on at
least two consecutive days were included in
this study ... Table 1 lists the patients used in
the former analyses by disease state, age, and
sex.

The authors have attempted to avoid sampling
bias in the assembly of the study population by using
a naturalistic sampling scheme with enrollment of all
of the patients admitted to their Cardiac Care Unit.
Unfortunately, not all of the patients had plasma
enzyme studies performed on at least two consecu-
tive days, so some of the potential subjects were
excluded from the evaluation.  Because the patients
in whom repeat diagnostic testing was not pursued
were probably not selected in a random fashion from
the Unit's population, their exclusion does introduce
a bias into the evaluation.  If the excluded patients
were those in whom the initial clinical findings
indicated only a small likelihood of myocardial
infarction, the bias is of the work-up type.  The
information that the investigators collected regarding
the clinical and biologic spectrum represented in the
study population is summarized in Table 1 of the
report.  There are subjects in all of the indicated
clinical subgroups but for some, such as infarct-free
patients with prior myocardial infarction, the number
of subjects studied is small.  This makes subgroup
differences difficult to demonstrate by statistical
analysis.  More importantly, though, small numbers
necessarily limit the degree of biologic variability
among the subjects and thereby lessen the reliability
of the performance estimates.

Analytic methodology
The final component of study design considered

in the evaluation report is the description of the
analytic procedures used to make the study measure-
ments.  Although it often happens that little attention
is given to this description, the procedures chosen

can affect the clinical utility of the study dramati-
cally.  Patient preparation, the manner of specimen
collection and handling, and the analytic methodol-
ogy, including instrumentation, need to be specified.

The use of inaccurate methods, especially those
suffering from poor analytic specificity, or imprecise
methods will lead to underestimation of study
performance.  As was mentioned in the description
of diagnostic-review bias, study performance will be
overestimated if there is a bias in favor of having
study results agree with reference classifications.  In
the case of diagnostic-review bias, this can happen
when study results are known at the time the refer-
ence classifications are made.  A similar bias may
arise if the test under evaluation has a subjective
element to its interpretation and the reference classi-
fications of the subjects are known to the individual
reviewing the test results at the time the interpreta-
tions are made.  This is called test-review bias
(Ransohoff and Feinstein 1978).  "Blind" interpreta-
tion of study results protects against this bias.

Information about the analytic methods should
be made available in the evaluation report either in
the form of summary statements of their technical
performance attributes or by referencing separate
technical method evaluations.  Werner et al. use the
latter approach:

All enzymes were assayed at 37° C.  A
mechanized system (System TR; Beckman
Instruments, Inc., Fullerton, CA 92634) was
used to perform the following kinetic assays:
the CK assay of Oliver

The mathematical techniques used for data
exploration and analysis are crucial methodological
elements of a performance evaluation.  They should
be identified and, when necessary, the appropriate-
ness of their use should be discussed (Wasson et al.
1985, Concato et al. 1993, Simon and Altman
1994).  It is especially important that statistical
assumptions that may be violated by the data be
addressed.  An example would be the need to
demonstrate the approximate normality of the data if
statistical methods based upon normal distributions
are used.  When a multivariate analytic approach
such as discriminant or logistic regression is used for
interpreting study result combinations, the goodness-
of-fit of the derived classification rule should be
assessed (Hosmer et al. 1991, Harrell et al. 1996,
Hosmer et al. 1997).
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If the evaluation recommends the use of a certain
critical value, the performance of the method at that
value should be subjected to a statistical test of
significance.  This amounts to asking the statistical
question:  to a stipulated level of confidence (again,
usually 95 percent certainty), are the number of
misclassifications at the critical value less than
would be expected on the basis of chance alone?  If
the critical value has been specified prior to review-
ing the performance data, the appropriate statistical
tools are the Fisher exact test, for small sample
numbers, and the chi-square test, for large sample
numbers.  If, however, the critical value has been
selected after examining the data, as happens when it
is chosen so as to maximize study efficiency, statisti-
cal significance should be assessed by using p values
corrected for post hoc selection of the critical value
or by using a statistical test designed for such
circumstances such as the one developed by Gail and
Green (1976).

Werner et al. report the statistical method,
stepwise discriminant function analysis, and the
computer program, BMDP7M, they employed for
their investigation of combination testing.  The use
of stepwise regression as a tool in the analysis of
multivariate rules is very common even though the
method can be problematic (Harrell et al. 1985,
Diamond 1989, Simon and Altman 1994).  Difficul-
ties associated with the method include inconsistency
in the selection of the significant variables, bias in
the estimation of the regression coefficients, and
overestimation of the statistical significance of the
coefficients.  A validation study (vide infra) is an
absolutely essential component of any performance
evaluation in which this analytic technique is used.

Presentation of findings
The presentation of the performance data, the

sixth component of the evaluation report, should be
in as complete a form as possible.  Ideally, the refer-
ence result frequency distributions should be given.
From these, readers can construct the ROC curve
and the likelihood ratio curve for the study.  The
ROC curve describes the performance of a study in
the form appropriate for comparing with alternative
studies and the likelihood ratio curve describes the
performance in the form needed for the Bayesian
assessment of classification probabilities.  It is desir-
able, of course, that the ROC and likelihood ratio
curves be presented in the report rather than having
the readers generate them (Jaeschke et al. 1994).  In

the evaluation of a multivariate diagnostic or
prognostic rule, it is impossible to present the joint
reference result frequency distributions if more than
two studies are involved.  It is possible to display the
reference result frequency distributions defined by
the rule and this should be done.  The ROC and
likelihood curves for the rule derived from these
distributions should also be presented.  Werner et al.
present their performance data as ROC curves, one
for each of the clinical settings considered in the
article:

The method for graphing ROC curves is not
standardized.  In this example, the horizontal and
vertical axes are, respectively, specificity and sensi-
tivity.  This agrees with the convention used in this
book.  Graphs in which the horizontal axis is one
minus specificity (usually called the "false positive
rate") and the vertical axis is sensitivity are often
found.  They give curves that are left-to-right mirror
images of those obtained when the horizontal axis is
specificity.  The practice of identifying at least some
of the points on the curve with the corresponding
critical values is not a standard practice either.
Here, the point associated with 120 U/L is circled.

Unfortunately, one does not always find a
complete presentation of the performance results.
Not uncommonly, study evaluations report the
classification performance of the study at a single
critical value.  In that case, the performance descrip-
tion should state explicitly the basis for the authors'
selection of the value.  The three most frequently
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cited reasons are that the value (1) is used by other
researchers, (2) yields a specificity of 0.95 (for
diagnostic studies), or (3) yields maximum
efficiency among the subjects studied.  If the first
criterion applies, the results of the evaluation can be
compared to those reported by others.  However, it
may not permit ready comparison of the perform-
ance of the method with that of alternative diagnostic
studies.  The second criterion permits comparisons
among alternative studies also evaluated at critical
values yielding a specificity of 0.95.  The third crite-
rion is problematic as it often makes it so that the
performance findings cannot be compared to the
findings from other evaluations concerned with the
same or alternative studies.

The statistical treatment of performance results
includes calculation of the confidence limits for the
performance estimates.  Confidence limits define the
range of values within which, to a stipulated level of
confidence, the true value of the estimate lies.  For
proportions (such as sensitivity, specificity, and
fraction correctly classified), confidence limit calcu-
lations are based upon the properties of the binomial
distribution.  For a proportion derived from a large
number of subjects (N more than 50), the approxi-
mate confidence limits of the estimate are,

estimate + zc
2

2N ! zc
estimate (1 − estimate)

N +
zc

2

4N2

1 + zc2

N

where zc is the confidence coefficient as found with
the standard normal distribution; zc equals 1.96 for a
95% confidence level and 1.645 for a 90% confi-
dence level.  For proportions derived from a small
number of subjects (fewer than 50), the calculation
of confidence limits is mathematically involved, so
they are usually taken from a table or graph.  The
95% confidence limits for proportions derived from
samples of 10, 20, 30, and 50 subjects are shown in
Figure 4.1.  If the result frequency distributions are
modeled, the performance measure estimates and
associated confidence limits as computed from the
model parameters should also be presented.  As an
example, based on the result frequency distributions
for transferrin saturation as a classification study in
the diagnosis of iron deficiency in 1-year-olds as
reported by Dallman et al. (1981), the empirical
specificity for a transferrin saturation of 10% is
0.75.  As there were 110 iron-replete infants
studied, the 95% confidence limits for the empirical

specificity of the study result are 0.662 and 0.822.
Based on lognormal models of the result frequency
distributions, the specificity at a transferrin satura-
tion of 10% is 0.79 with 95% confidence limits,
0.719 and 0.844.  The width of the confidence inter-
val for the estimate derived from the distribution
model will always be smaller than the interval for
the empirical estimate (White and James 1996).
Here there is a 22% difference in the interval
widths.  The ROC curve for transferrin saturation
(see Chapter 3) shown in Figure 4.2 indicates the
95% confidence intervals for the empirical sensitiv-
ity and specificity estimates.

Confidence limits should also be calculated for
likelihood ratios (Fleiss 1981).  Figure 4.3 shows the
likelihood ratio curve for transferrin saturation (see
Chapter 3) with the approximate 95% confidence
intervals for the ratios indicated.  Werner et al. state
that:

We estimated the uncertainties of these
measurements by analogy with binomial distri-
bution ... The uncertainty (standard deviation)
ranges for sensitivity estimates from 0.70 ±
0.08 to 0.80 ± 0.07 and for specificity
estimates from 0.96 ± 0.02 to 0.99 ± 0.01.

Some researchers also present data for the
predictive value of study results (Linnet 1988).
When these calculations are based upon appropriate
epidemiologic estimates of the prevalence of the
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Figure 4.1  95% confidence limits for performance
estimates.  The number of study subjects is indicated.
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diagnostic or prognostic classes, the predictive
values are meaningful.  Studies employing properly
performed naturalistic and retrospective sampling
schemes include an epidemiologic inquiry into class
prevalence, so the reported predictive values are
valid for the site at which the evaluation was
performed.  The values may not apply at other sites
because the prevalence of diagnostic or prognostic
classes can differ between locations and institutions.

The problem of varying class prevalence at
different sites also arises with classification rules
based on logistic functions. Because logistic
functions include terms for class prevalence, the
posterior probability calculations reflect the class
prevalences at the site evaluating the classification
study.  The probability estimates will be erroneous
at sites where the class prevalences are different
unless the classification rules are corrected for local
class prevalence (Poses et al. 1986, Morise et al.
1996).

Validation
The final component of a performance evalua-

tion report is the description of the methods and
results of a validation study of the performance
findings.  The most convincing way to demonstrate
the validity of the findings is to perform an identical
investigation in new group of subjects and to arrive

at the same performance estimates.  This task is
usually left to other researchers.  What is done
instead is to confirm the reported findings among
subjects from the original study population.  This is
called cross-validation.  The simplest design for a
cross-validation study, and the one most often seen
in the medical literature, is to perform the evaluation
using only some of the subjects, the training sample,
having selected them at random. The evaluation is
then repeated using the remainder of the subjects,
the validation sample.  Concurrence of the perform-
ance estimates in the two groups indicates that the
findings are valid.  A particularly powerful way to
demonstrate concurrence is to use the likelihood
ratio estimates derived from the training sample to
predict the probability of class membership among
the individuals in the validation sample.  The
predicted probabilities are then compared to the
observed probabilities, i.e. class membership
frequencies, by plotting them as a calibration curve
(e.g., Figure 4.4).  Points for the curve are gener-
ated by binning the predicted probability results into
subgroups each of which has roughly the same
number of data.  If the performance estimates are
valid, the calibration curve will closely follow the
line of identity.
 Another way to demonstrate the validity of a
performance evaluation is to show that the findings
do not change as a consequence of reasonable varia-
tion in the analytic and reference methods or in the
composition of the study population.  Such an analy-
sis can be provided for as part of the evaluation
design, for example, by using a design that permits
calculation of the magnitude of analytic variability,
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Figure 4.2  ROC curve for transferrin saturation with 95%
confidence intervals indicated.  The intervals for the speci-
ficity estimates are shown as lines parallel to the specificity
axis and the intervals for the sensitivity estimates are shown
as lines parallel to the sensitivity axis.
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Figure 4.3  The likelihood ratio of iron deficiency as a
function of transferrin saturation with 95% confidence inter-
vals indicated.



or it may be performed retrospectively, for example,
by using regression analysis to evaluate the effects of
demographic variables.

META-ANALYSIS

Most promising laboratory studies are the
subject of numerous performance evaluations within
a short time following their initial descriptions.
Especially interesting studies are likely to engender a
daunting bibliography.  Given a profusion of
reports, how does one integrate the findings to arrive
at an accurate appraisal of the performance of the
study?  Clearly, a well-defined, systematic approach
is called for, one that is able to deal in a quantitative
way with the numerical data generated in perform-
ance evaluations.  The field of study concerned with
this question is the discipline of meta-analysis
(Jenicek 1989).  Research in meta-analytic
techniques has been conducted for barely 30 years
and applications in clinical medicine have appeared
only recently.  To date, most medical meta-analyses
have dealt with the assessment of treatment effec-
tiveness and cause-effect relationships.  However,
some work has been done in developing a meta-
analytic approach to the assessment of classification
performance (Irwig et al. 1994).  

Performance evaluation meta-analysis proceeds
in three steps: 1) the assembly of the pertinent
evaluation reports, 2) qualitative meta-analysis, and

3) quantitative meta-analysis (Jenicek 1989).  The
first step, retrieval of the relevant literature, is not a
trivial aspect of meta-analysis.  Indeed, literature
retrieval is itself an area of research within the disci-
pline of medical informatics.  Because of shortcom-
ings in any single approach to searching the
literature, it is recommended that multiple methods
be employed, including searching computerized
literature databases, reviewing appropriate journals,
and consulting expert practitioners and laboratorians
(Irwig et al. 1994).  When relevant research remains
unpublished because the findings are negative, i.e.
show poor study performance, meta-analysis will
overestimate study performance.  This is a form of
publication bias (Dickersin and Berlin 1992).  It is
clear that publication bias is a common problem in
the meta-analysis of therapeutic research but the
extent of this difficulty in the meta-analysis of classi-
fication study performance is not known.

Qualitative meta-analysis consists of the catego-
rization of study reports according to the design of
the performance evaluation and the assessment of the
quality of the individual evaluations.  Nierenberg
and Feinstein (1988) have proposed the five category
scheme of diagnostic study design shown in Table
4.3.  Each successive category in the scheme is
characterized by an increase in the breadth and rigor
of the evaluation until, in category V, an ideal
evaluation is achieved.  Category IV evaluations are
those that fall somewhat short of ideal, usually
because of some limitations in the spectrum of the
study populations.  Category V and category IV
evaluations are the ones upon which further meta-
analysis should be performed. The findings of the
exploratory evaluations constituting categories I, II,
and III must be considered preliminary or provi-
sional so these studies should not be included in the
meta-analysis.  A three category scheme for
prognostic study design has been suggested by
Simon and Altman (1994).  In their scheme,
category 1 consists of early exploratory evaluations,
comparable to Nierenberg and Feinstein's categories
I, II, and III.  Category 2 represents evaluations of
the clinical performance of a study as a means of
classifying prognostic groups and category 3 consists
of clinical evaluations designed to identify subsets of
patients who will benefit from a given therapy.
Depending upon the clinical spectrum and number of
patients studied, the evaluations in these two catego-
ries correspond to Nierenberg and Feinstein's
categories IV or V.
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Figure 4.4  Hypothetical calibration curve from a validation
study.  The squares represent the mean values of the
subgroup probabilities and the continuous line is the line of
identity.



The quality of category IV and V diagnostic
performance evaluations and category 2 and 3
prognostic performance evaluations is assessed
according to the design standards described in the
preceding section of this chapter.  Some studies may
be found to have one or more serious design flaws
which bring into question the validity of the evalua-
tion findings.  These studies should be considered
unacceptable and they should be excluded from
further analysis.  Studies with less serious flaws may
be grouped and analyzed separately or, if they are
included in the quantitative meta-analysis, may have
their contribution to the analysis weighted by some
index of quality.  No standard quality weighting
index exists, to date.  All well-designed performance

evaluations should be included in the quantitative
meta-analysis.

Quantitative meta-analysis attempts to combine
the quantitative findings of performance evaluations
in a way that will give a more complete and
presumably more accurate representation of the
performance of a laboratory study.  This is done by
combining the report results so as to generate aggre-
gate performance data.  How this is accomplished
depends upon the presentation of the individual
evaluation results.  When complete performance data
are available in the form of result frequency distribu-
tions, the frequency data can be combined so as to
produce aggregate result frequency distributions
from which aggregate ROC and likelihood ratio
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Table 4.3
Categories of Performance Evaluation Design

Category Characteristics Example study result distributions

I performance of procedures
cases: typical spectrum of disease
controls: none

II coarse distinctions
cases: typical spectrum of disease
controls: healthy

III more subtle distinctions
cases: expanded spectrum of disease
controls: healthy

IV preliminary clinical application
cases: include appropriate comorbidity
controls: include appropriate comorbidity

V definitive clinical application
cases: full spectrum
controls: full spectrum



curves can be constructed.  This is ideal.  If result
frequency distributions are not given but ROC
curves are presented, ordinal regression methods can
be used to model an aggregate ROC curve (Tosteson
and Begg 1988).  In addition, an aggregate likeli-
hood ratio curve can be modeled using logistic
regression techniques (Irwig 1992).

If each evaluation reports only one or a few
sensitivity and specificity pairs or, in the case of a
two-group prognostic study, only a few of the
fraction correctly classified pairs, the findings from
all the evaluations should be plotted together gener-
ating an aggregate ROC curve.  The data can also be
modeled to yield a summary ROC curve (Littenberg
and Moses 1993, Irwig et al. 1994).  Data pairs that
lie at some distance from a fitted summary ROC
curve are outliers.  Explaining such outliers is an
essential component of a quantitative meta-analysis.
A thorough and systematic examination of the
methods employed in the evaluations must be
conducted to identify the methodological differences
that resulted in outlying findings (Charlson et al.
1987).

Sometimes it is not possible to generate aggre-
gate performance data as part of a meta-analysis
because the reported findings are not consistent with
the assumption of a shared underlying classification
performance.  In that case, methodological review of
the evaluations should reveal the causes of the
variability in the data.  It can also happen that the
assembled data do not combine in such a way as to
yield a complete description of the diagnostic or
predictive performance of a study.  This happens,
for instance, when the evaluations are concerned
with study performance only in a restricted range,
such as when describing the performance of a
diagnostic study only at critical values for which the
specificity is near 0.95.  Then all that can be done is
to average the data to produce a single performance
pair—not one associated with a stipulated critical
value but, rather, one associated with a predeter-
mined value of one of the members of the pair.
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